

Technical Reference Manual DCC Public Page 1 of 89

Technical Reference Manual
GIT for Industry

Version: 4.9.0

Date: 15th May 2023

Author: Smart DCC Ltd.

Classification: DCC Public

Technical Reference Manual DCC Public Page 2 of 89

Document Control

Revision History

Revision
Date

Summary of Changes
Changes
Marked

Version
Number

28/10/2015 First version. N/A 1.0RC4

27/11/2015 Update N/A 1.0RC5

03/08/2016 Update for enhanced version N/A 1.3.2E

08/08/2017 Update N/A 1.3.8E

25/08/2017 Update N/A 2.0.0 RC1

30/11/2017 Update N/A 2.0.0 RC2

09/02/2017 Update N/A 2.0.0

27/03/2018 Update N/A 2.0.1

30/04/2018 Update N/A 2.0.2

28/05/2018 Update N/A 2.0.3

05/07/2018 Update N/A 2.1.0

09/10/2018 Update N/A 2.1.1

16/01/2019 Update N/A 2.1.2

06/03/2019 Update N/A 2.1.3

24/04/2019 Update N/A 2.1.4

17/06/2019 Update N/A 2.1.5

06/09/2019 Update N/A 2.1.6

13/09/2019 Update N/A 3.0.0

25/10/2019 Update N/A 3.0.1

14/11/2019 Update N/A 3.0.2

09/01/2020 Update N/A 3.1.0

31/01/2020 Update N/A 3.1.1

13/03/2020 Update N/A 3.2.0

23/04/2020 Update N/A 3.2.1

08/05/2020 Update N/A 3.3.0

19/06/2020 Update N/A 4.0.0

26/06/2020 Update N/A 4.0.1

09/07/2020 Update N/A 4.1.0

24/07/2020 Update N/A 4.2.0

31/07/2020 Update N/A 4.2.1

Technical Reference Manual DCC Public Page 3 of 89

Revision
Date

Summary of Changes
Changes
Marked

Version
Number

12/08/2020 Update N/A 4.2.2

18/08/2020 Update N/A 4.2.3

31/08/2020 Update N/A 4.2.4

10/09/2020 Update N/A 4.2.5

15/09/2020 Update N/A 4.2.6

18/09/2020 Update N/A 4.2.7

06/10/2020 Update N/A 4.2.8

26/11/2020 Update N/A 4.2.9

28/01/2021 Update N/A 4.3.0

31/03/2021 Update N/A 4.4.0

31/05/2021 Update N/A 4.5.0

27/08/2021 Update N/A 4.6.0

28/09/2021 Update N/A 4.6.1

26/10/2021 Update N/A 4.6.2

15/12/2021 Update N/A 4.6.3

27/01/2022 Update N/A 4.7.0

24/03/2022 Update N/A 4.7.1

31/05/2022 Update N/A 4.8.0

15/05/2023 Update N/A 4.9.0

Reviewers

Name Title / Responsibility
Release
Date

Version
Number

Gonçalo
Gouveia

Critical Software Project Engineer 1.0RC5

Karim Kanso Critical Software Senior Engineer 1.3.2E

Dinis Paes Critical Software Technical Manager 1.3.8E

Dinis Paes Critical Software Technical Manager 2.0.0 RC1

Dinis Paes Critical Software Technical Manager 2.0.0 RC2

Pedro Almeida Critical Software GFI Team Leader 09/02/2017 2.0.0

Helder Martins Critical Software GFI Team Member 27/03/2018 2.0.1

Helder Martins Critical Software GFI Team Member 30/04/2018 2.0.2

Helder Martins Critical Software GFI Team Member 28/05/2018 2.0.3

Technical Reference Manual DCC Public Page 4 of 89

Name Title / Responsibility
Release
Date

Version
Number

Helder Martins Critical Software GFI Team Member 05/07/2018 2.1.0

Helder Martins Critical Software GFI Team Member 09/10/2018 2.1.1

Helder Martins Critical Software GFI Team Member 16/01/2019 2.1.2

Francisco Pinto Critical Software GFI Team Leader 06/03/2019 2.1.3

Francisco Pinto Critical Software GFI Team Leader 24/04/2019 2.1.4

Francisco Pinto Critical Software GFI Team Leader 17/06/2019 2.1.5

Helder Martins Critical Software GFI Team Member 06/09/2019 2.1.6

Helder Martins Critical Software GFI Team Member 13/09/2019 3.0.0

Helder Martins Critical Software GFI Team Member 25/10/2019 3.0.1

Francisco Pinto Critical Software GFI Team Leader 14/11/2019 3.0.2

Helder Martins Critical Software GFI Team Member 09/01/2020 3.1.0

Helder Martins Critical Software GFI Team Member 31/01/2020 3.1.1

Nuno Besteiro Critical Software GFI Team Member 13/03/2020 3.2.0

Sara Alves Critical Software GFI Team Member 23/04/2020 3.2.1

Sara Alves Critical Software GFI Team Member 08/05/2020 3.3.0

Nuno Besteiro Critical Software GFI Team Member 19/06/2020 4.0.0

Nuno Besteiro Critical Software GFI Team Member 26/07/2020 4.0.1

Nuno Besteiro Critical Software GFI Team Member 09/07/2020 4.1.0

Helder Martins Critical Software GFI Team Member 24/07/2020 4.2.0

Nuno Besteiro Critical Software GFI Team Member 31/07/2020 4.2.1

Francisco Pinto Critical Software GFI Team Leader 12/08/2020 4.2.2

Helder Martins Critical Software GFI Team Member 18/08/2020 4.2.3

Helder Martins Critical Software GFI Team Member 31/08/2020 4.2.4

Francisco Pinto Critical Software GFI Team Leader 10/09/2020 4.2.5

Daniel Oliveira Critical Software GFI Team Member 15/09/2020 4.2.6

Francisco Pinto Critical Software GFI Team Leader 18/09/2020 4.2.7

Daniel Oliveira Critical Software GFI Team Member 06/10/2020 4.2.8

Francisco Pinto Critical Software GFI Team Leader 26/11/2020 4.2.9

Francisco Pinto Critical Software GFI Team Leader 28/01/2021 4.3.0

Helder Martins Critical Software GFI Team Member 31/03/2021 4.4.0

Pedro Marques Critical Software GFI Team Member 31/05/2021 4.5.0

Fábio Silva Critical Software GFI Team Member 27/08/2021 4.6.0

Francisco Pinto Critical Software GFI Team Leader 28/09/2021 4.6.1

Technical Reference Manual DCC Public Page 5 of 89

Name Title / Responsibility
Release
Date

Version
Number

Francisco Pinto Critical Software GFI Team Leader 26/10/2021 4.6.2

José Rodrigues Critical Software GFI Team Member 15/12/2021 4.6.3

Francisco Pinto Critical Software GFI Team Leader 27/01/2022 4.7.0

Francisco Pinto Critical Software GFI Team Leader 24/03/2022 4.7.1

Francisco Pinto Critical Software GFI Team Leader 31/05/2022 4.8.0

José Rodrigues Critical Software GFI Product Owner 15/05/2023 4.9.0

Approvals

Name Signature Title / Responsibility
Release
Date

Version
Number

António Alves Critical Software Technical Manager 09/08/2016 1.3.2E

Dinis Paes Critical Software Technical Manager 08/08/2017 1.3.8E

Dinis Paes Critical Software Technical Manager 25/08/2017 2.0.0 RC1

Dinis Paes Critical Software Technical Manager 04/12/2017 2.0.0 RC2

Pedro Almeida Critical Software GFI Team Leader 09/02/2018 2.0.0

Pedro Almeida Critical Software GFI Team Leader 27/03/2018 2.0.1

Pedro Almeida Critical Software GFI Team Leader 30/04/2018 2.0.2

Pedro Almeida Critical Software GFI Team Leader 28/05/2018 2.0.3

Pedro Almeida Critical Software GFI Team Leader 05/07/2018 2.1.0

Pedro Almeida Critical Software GFI Team Leader 09/10/2018 2.1.1

Pedro Almeida Critical Software GFI Team Leader 16/01/2019 2.1.2

Pedro Almeida Critical Software Technical Manager 06/03/2019 2.1.3

Pedro Almeida Critical Software Technical Manager 24/04/2019 2.1.4

Pedro Almeida Critical Software Technical Manager 17/06/2019 2.1.5

Pedro Almeida Critical Software Technical Manager 06/09/2019 2.1.6

Pedro Almeida Critical Software Technical Manager 13/09/2019 3.0.0

Pedro Almeida Critical Software Technical Manager 25/10/2019 3.0.1

Pedro Almeida Critical Software Technical Manager 14/11/2019 3.0.2

Pedro Almeida Critical Software Technical Manager 09/01/2020 3.1.0

Pedro Almeida Critical Software Technical Manager 31/01/2020 3.1.1

Pedro Almeida Critical Software Technical Manager 13/03/2020 3.2.0

Pedro Almeida Critical Software Technical Manager 23/04/2020 3.2.1

Pedro Almeida Critical Software Technical Manager 08/05/2020 3.3.0

Technical Reference Manual DCC Public Page 6 of 89

Name Signature Title / Responsibility
Release
Date

Version
Number

Pedro Almeida Critical Software Technical Manager 19/06/2020 4.0.0

Pedro Almeida Critical Software Technical Manager 26/06/2020 4.0.1

Pedro Almeida Critical Software Technical Manager 09/07/2020 4.1.0

Pedro Almeida Critical Software Technical Manager 24/07/2020 4.2.0

Francisco Pinto Critical Software GFI Team Leader 31/07/2020 4.2.1

Pedro Almeida Critical Software Technical Manager 12/08/2020 4.2.2

Pedro Almeida Critical Software Technical Manager 18/08/2020 4.2.3

Pedro Almeida Critical Software Technical Manager 31/08/2020 4.2.4

Pedro Almeida Critical Software Technical Manager 10/09/2020 4.2.5

Pedro Almeida Critical Software Technical Manager 15/09/2020 4.2.6

Pedro Almeida Critical Software Technical Manager 18/09/2020 4.2.7

Pedro Almeida Critical Software Technical Manager 06/10/2020 4.2.8

Pedro Almeida Critical Software Technical Manager 26/11/2020 4.2.9

Pedro Almeida Critical Software Technical Manager 28/01/2021 4.3.0

Pedro Almeida Critical Software Technical Manager 31/03/2021 4.4.0

Pedro Almeida Critical Software Technical Manager 31/05/2021 4.5.0

Pedro Almeida Critical Software Technical Manager 27/08/2021 4.6.0

Pedro Almeida Critical Software Technical Manager 28/09/2021 4.6.1

Pedro Almeida Critical Software Technical Manager 26/10/2021 4.6.2

Pedro Almeida Critical Software Technical Manager 15/12/2021 4.6.3

Pedro Almeida Critical Software Technical Manager 27/01/2022 4.7.0

Pedro Almeida Critical Software Technical Manager 24/03/2022 4.7.1

Pedro Almeida Critical Software Technical Manager 31/05/2022 4.8.0

José Rodrigues Critical Software GFI Product Owner 15/05/2023 4.9.0

Technical Reference Manual DCC Public Page 7 of 89

Table of Contents

1 Introduction ... 11

1.1 Objective .. 11

1.2 Document structure .. 11

2 Overview .. 11

2.1 High Level Architecture .. 11

2.1.1 VSIS-Core .. 12

2.1.2 Simulation ... 12

2.1.3 GFI Testing Tool ... 12

2.1.4 Test Library ... 13

2.1.5 Messages Database ... 13

2.1.6 GFI-Testing-Tool GUI ... 13

2.1.7 Communications Hub .. 13

2.2 Reference Testbed .. 14

2.3 Inputs and Outputs ... 15

2.3.1 Configuration File .. 16

2.3.2 Test Properties File ... 16

2.3.3 Test Report Files .. 16

2.3.4 Console Output ... 16

2.3.5 Execution Log ... 16

2.3.6 Communications Hub Configuration File ... 17

2.4 Test Execution ... 17

2.5 Results Analysis ... 17

3 Test Setup .. 17

3.1 Scenario Configuration File .. 18

3.1.1 Console and Log Output ... 18

3.1.2 Test Case Scheduling ... 19

3.1.3 Result Manager .. 20

3.1.4 Simulation Manager .. 20

3.1.5 Emulators ... 20

3.1.6 Client .. 29

3.2 Test Properties File .. 30

3.2.1 Report Information .. 31

3.2.2 Resource Combiner .. 32

3.2.3 Resource Pool .. 32

Technical Reference Manual DCC Public Page 8 of 89

3.2.4 Test Repetition .. 33

4 Communications Hub ... 34

4.1 Configuration File ... 34

4.1.1 Interfaces Configuration .. 34

4.1.2 HAN Configuration .. 35

4.1.3 GPF configuration ... 36

4.1.4 CHF configuration ... 37

4.1.5 CHF Device Log ... 39

4.2 Execution ... 40

4.3 Logging .. 43

4.4 Control Port .. 43

4.4.1 Exit ... 44

4.4.2 Get Key Table ... 45

4.4.3 Add Device ... 45

4.4.4 Remove Device .. 45

4.4.5 UnJoin Device ... 46

4.4.6 Get Stack Versions ... 46

4.4.7 Get CH Time ... 46

4.4.8 Sync CH Time with Operative System .. 46

4.4.9 Set CH Time ... 46

4.4.10CH Soft Stop .. 47

4.4.11CH Hard Stop ... 47

4.4.12Get Zigbee network info ... 47

4.4.13Get CH device info ... 47

5 Test Execution ... 48

5.1 Command Line Execution .. 48

5.2 Command Line Options ... 49

5.2.1 Help .. 49

5.2.2 Version ... 50

5.2.3 Cryptography .. 50

5.2.4 Offline Check .. 51

5.2.5 Verbose Level ... 51

5.2.6 Output Directory .. 52

5.3 Test Report: XML ... 52

5.3.1 Properties ... 53

5.3.2 Overall Result ... 53

Technical Reference Manual DCC Public Page 9 of 89

5.3.3 Test Case ... 54

5.4 Test Report: HTML .. 57

5.4.1 Test Information .. 57

5.4.2 Test Cases Results ... 58

5.4.3 Test Cases Execution ... 58

5.4.4 Test Case Results Summary .. 60

5.5 Console Execution Output ... 61

5.5.1 Time ... 61

5.5.2 Area .. 61

5.5.3 Level ... 61

5.5.4 Message ... 61

5.6 Execution Log File ... 62

5.6.1 Sequence number... 62

6 Use Case Creation/Upgrade ... 62

6.1 Process Overview .. 63

6.2 Use Case Specification .. 64

6.2.1 Command Payload ... 64

6.2.2 Response Payload .. 65

6.2.3 Alert Payload .. 66

6.2.4 Use Case Test .. 66

6.2.5 XML Assembling ... 66

6.2.6 Use Case Configuration .. 68

6.2.7 Custom Message Code .. 69

6.2.8 Match Message Code and Message Type .. 69

6.3 Use Case Coding ... 70

6.3.1 Base Class Files ... 71

6.3.2 Command Class Files ... 71

6.3.3 Response Class Files ... 71

6.3.4 Alert Class Files .. 72

6.3.5 Test Case Class files .. 72

6.3.6 Emulator Class ... 72

6.3.7 Store Model .. 72

6.3.8 Compilation ... 73

6.3.9 Installation .. 75

6.4 Use Case Execution .. 76

6.4.1 Execution with GUI ... 77

Technical Reference Manual DCC Public Page 10 of 89

6.5 Use Case Validation .. 77

7 Adding New Test Cases to the GUI .. 77

7.1 Test Case Database File .. 78

7.2 Manufacturer Test Cases File .. 79

8 Business Scenarios .. 80

9 OTA Functionality .. 81

9.1 OTA Tool ... 81

9.1.1 Build OTA Upgrade Image .. 82

9.1.2 Verify OTA Upgrade Image ... 83

9.1.3 Verify Header + Manufacturer Image .. 84

9.2 Send Image to Devices .. 85

9.2.1 Send Image notify to devices by node Id ... 86

9.2.2 Send Image notify to all devices by broadcast .. 86

10 Sending Publish Events Zigbee Command ... 86

10.1 Generate and Send Unsolicited Publish Events ... 86

11 Glossary ... 87

Technical Reference Manual DCC Public Page 11 of 89

1 Introduction

1.1 Objective

This document is a Technical Reference Manual for the GFI testing tool intended to provide detailed
technical information for standard and advanced user operation and configuration.

1.2 Document structure

Section 1 (Introduction) presents a general description of this document's contents.

Section 2 (Overview) presents a general description of the framework operation.

Section 3 (Test Setup) presents a detailed description of the Test setup process.

Section 4 (Communications Hub) presents information relating to the configuration and execution of the
communications hub.

Section 5 (Test Execution) presents a detailed description of the Test execution process.

Section 6 (Use Case Creation) presents a detailed description of how to create a new Use Case. This
section is minded for Advanced Users only.

Section 7 (Adding New Test Cases to the GUI) presents a detailed description of how to add new Test
Cases to the GUI.

Section 8 (Business Scenarios) presents the location of Business Scenarios manuals and workspaces.

Section 9 (OTA Functionality) presents a description of the OTA functionality.

Section 10 (Sending Publish Events Zigbee Command) presents information on how to use the GFI CH
to Publish and event to devices bound to the Events Cluster.

Section 11 (Glossary) presents a list of definitions and acronyms used throughout this document.

2 Overview

GIT for Industry (GFI) is a software tool, provided by Smart DCC, for anybody that wishes to check
whether their interpretation of the Great Britain Specification Companion for smart meters (GBCS) is
consistent with Smart DCC’s. At the time of writing, GFI supports Use Cases for GBCS v4.0 over a
ZigBee HAN. In addition to the library of Use Cases, GFI allows end users to create new, or extend
existing GBCS Use Cases. This manual provides detailed technical information for advanced operation
of the tool.

2.1 High Level Architecture

GFI is a testing tool and systems validation competence centre. In the core of the tool lays a message
oriented infrastructure, where the message field is the most elementary entity. In a simplified overview,
the tool executes elementary operations over message fields and messages, namely sets, checks, gets,
sends and waits, among a few others. Therefore, a fundamental concept that should always be kept in
mind is the concept of message and respective fields.

Messages and respective fields are defined in a database, automatically generated from message
specifications. This database creates an abstraction layer between the engine of the testing tool (and the
tests themselves) and the protocols and interfaces, through which messages are sent and received,
leveraging a high level of decoupling between Tests, communication protocols and transmission medium.

To execute and produce the respective reports, modify and/or create Use Cases, a number of steps need
to be taken. The following Sections provide detailed technical information for standard and advanced

Technical Reference Manual DCC Public Page 12 of 89

User operation. Also a top level architecture overview is provided in the next Section, describing each
one of the main modules that form the testing tool.

Figure 1 provides a high level overview of the system’s architecture. There are six main modules (shown
in purple): GFI testing tool, VSIS Core, Communication Hub, Simulation, Test Library and Messages
Database.

Figure 1 – GFI high level architecture.

2.1.1 VSIS-Core

This is the central element of the framework, provided as a library. This is where all the logic and
functionalities of the testing tool are concentrated. This module is responsible for the creation of the test
environment and all the necessary resources for the test execution:

▪ The execution of the test;

▪ Generating all the log information;

▪ Generating all the execution reports;

2.1.2 Simulation

The Simulation Manager is responsible for handling the routing of GBCS messages between the KRP
and the Devices when the test is executed in an emulated scenario (with emulated Devices).

2.1.3 GFI Testing Tool

This is the highest layer of the test framework, responsible for establishing the connections between
Core, Simulation Manager, Communications Hub and the Test Library. This tool may be invoked either
by the GUI (which generates the commands to be executed) or directly from the command line.

Technical Reference Manual DCC Public Page 13 of 89

2.1.4 Test Library

This is the library containing all the Use Cases specified by GBCS and available for the Tester to use in
the construction of Tests.

2.1.5 Messages Database

This is a database containing all the messages that provide support for the execution of the Use Cases.
For instance, this database contains the General Ciphering Message and General Signing Message as
well as all the other messages specified by GBCS.

2.1.6 GFI-Testing-Tool GUI

The Testing Tool’s Graphical User Interface, providing functionality for editing, executing and analysing
user-implemented test procedures.

2.1.7 Communications Hub

Beginning with GFI version 1.3.2E, an implementation of a communications hub1 is offered which acts
as a gateway to a persistent ZigBee HAN where physical devices may be connected, and supports
several CHF and GPF features including maintaining a whitelist of devices allowed in the HAN and
mirroring of GSME data. Figure 2 shows the Communications Hub’s architecture. Next is a brief
description of each block.

Figure 2 – Communications Hub’s Architecture

1 This should not be confused with the CHF/GPF emulators offered in the fully-emulated option. This module is the gateway to a real HAN
(using physical devices) via a ZigBee adaptor.

Technical Reference Manual DCC Public Page 14 of 89

Daemon Process Control

The Communications Hub runs as a service. As such, and upon starting, it will run in the background
waiting for requests. The Daemon Process Control is an ordinary script which provides an interface to
the Communications Hub process, supporting the usual service commands such as start, stop, status
and restart. To start the Communications Hub, a configuration file needs to be provided. The GUI
provides a friendly user-interface to build the start-up configuration file and issueing the commands to
control the communications Hub.

One consequence of being a service is the capability of persisting information between tests, as will be
seen in later sections, something which cannot be achieved using full emulation, as state is not kept
between tests in this latter case.

CHF

The Communications Hub Function will service all test-cases in which it is the target device (e.g. CCS01)
and validate and forward messages destined to other devices (e.g. GPF, ESME). As shown in Figure 2,
the GFI-testing-tool uses a TCP port (referred to as WAN TCP port) to send/receive the GBCS messages.
There is an additional TCP port used by the Communications Hub referred as the Control port, which
can be used by any application to issue commands to the Communications Hub (it is used by the GUI to
query the list of devices).

GPF

The Gas Proxy Function’s main role is to support a copy of GSME data. This copy is maintained using
the ZSE mirroring and GBCS Tapping Off (TOM) mechanisms as described in GBCS. The GPF is then
able to provide this data both to the WAN using the relevant GBCS use-cases and to the HAN using ZSE
commands.

Coordinator

The coordinator manages the interactions with the ZigBee stack and makes the functionality supported
by the stack available to the CHF and GPF modules.

Endpoints

The Communications Hub provides the following ZigBee endpoints:

▪ Remote Communications Device Endpoint: used for communication in the HAN.
▪ Gas ESI Endpoint: mirroring of GSME data and processing of Tapping Off commands.
▪ Gas Mirror Endpoint: mirroring of GSME data.

2.2 Reference Testbed

The GFI framework operates as a home area network (HAN) and emulates Remote Parties, ACB and
CHF. It creates a ZigBee network and allows Devices to join. Through these connections it communicates
with Devices in order to execute the Tests. In this communications, messages are exchanged using the
GBCS protocol: commands are sent and the relevant Devices’ responses and alerts are gathered to
produce the Test Reports and to verify the Devices’ conformance with the protocol. The reference
Testbed is presented in Figure 3.

Technical Reference Manual DCC Public Page 15 of 89

Note: The GFI testing tool only performs conformance tests against the GBCS v4.0 protocol, not
functional tests. Although some minimal functional tests can be implemented and are in fact supported,
that is not the purpose of the tool.

Figure 3 – GFI Testbed diagram.

2.3 Inputs and Outputs

Table 1 presents the inputs required and the outputs produced by the testing tool. A short description for
each artefact is also presented.

File I/O Type Description

<scenario-file>.xml Input Configuration file

The scenario configuration file required by
the tool specifies what equipment to use;
e.g., the device configurations, keys and
certificates.

<properties-file>.xml Input
Test properties
file

The Test properties file required by the tool
specifies which Test Cases should be
executed, the input data and the expected
results for each Test Case.

<test-report>.xml Output Test report file
The raw execution report produced by the
tool in XML format. It can be used by third-
party tools to produce a customized report.

<test-report>.html Output Test report file

The final execution report produced by the
tool in HTML format. Highlights all the
relevant actions executed in the test as well
as the results of each Test Case, Test Case
iteration and Test Case step.

<execution-log>.csv Output Execution log file

The full execution output in comma-
separated values format. Contains the full
detail available from the tool’s execution.
Every single action (set, check, send, wait)
performed by the tool is recorded in this file.

Technical Reference Manual DCC Public Page 16 of 89

File I/O Type Description

<ch_conf_timestamp>.xml Input
Communications
Hub
configuration file

An XML configuration file which the CH loads
upon booting up. Defines general settings,
ZigBee radio configurations and may also
add a set of devices to the CH’s whitelist.

Table 1 – Input and Output artefacts.

The following Sections contain a description for each one of these artefacts and the role they play in the
system.

2.3.1 Configuration File

To setup a working environment for a Test, all the configurations should be defined in the scenario file
<scenario-file>.xml. In this file, the settings for the produced outputs, test scheduler, emulators,
equipment and codecs used may be tweaked to cope with environment needs. For instance, a Test can
be executed in a scenario with real ESME/GSME devices or in a scenario with emulated devices. This
configuration is defined in this file. A detailed description of this file and all of its components and options
is presented in Section 3.1.

2.3.2 Test Properties File

The Test Cases that constitute the Test should be defined in the Test Properties file <test-
properties>.xml. After the Test specific configurations at the top of the file, information regarding each
Test Case (directly mapped to the SMETS Use Case) should be added, namely input parameters and
expected outputs. Again, a detailed description of this file, organisation, input parameter definition and
options is available in later Section 3.2.

2.3.3 Test Report Files

Upon the Test execution, two report files are generated: a raw XML with all the sets, checks, action prints
and exchanged messages and a formatted HTML with a human readable appearance. Information on
these files is detailed in Sections 5.3 and 5.4, respectively. These files may be considered the final
outputs and contain the overall PASS/FAIL information as well as the detailed PASS/FAIL for each
expected result.

2.3.4 Console Output

All the relevant actions executed in the Test are outputted to the console. The detail level of this execution
output can be customized either by using a command line option or in the scenario configuration file
<scenario-file>.xml. The higher the value chosen for the detail level, the more information will be
displayed in the console. At the maximum detail level every bit of information available will be presented.
Further information on this subject is accessible in later Section 5.5.

2.3.5 Execution Log

Like the console output, the tool also produces an execution log with a configurable level of detail defined
in the Scenario Configuration file <scenario-file>.xml (see Section 3.1.1). The higher the value chosen
for the detail level, the more information will be recorded in the log. It should always be the highest
possible value (default) for the sake of record keeping. Further information on this subject is accessible
in later Section 5.6.

Technical Reference Manual DCC Public Page 17 of 89

2.3.6 Communications Hub Configuration File

To start the Communications Hub a configuration file needs to be provided. The GUI can be used to
create and store several configurations, corresponding to different environments (e.g. different ZigBee
radio settings and/or pre-configured whitelists). The GUI provides a user-friendly way of generating this
file and issueing the commands to the CH, shielding the user from having to deal with the command
line. The files generated feature a timestamp and will always be deleted upon shutting down the
daemon. The process of generating a CH configuration file should ideally be the first step when the tool
is operating in physical mode, and will be described in detail in Section 4.1.

2.4 Test Execution

For a Test to be executed the testing tool application should be invoked in a command line, using the
Scenario Configuration file and the Test Properties file as parameters. In Figure 4 an example of the
command line common call is provided.

Figure 4 – GFI tool command line invocation example.

If the test is against a physical meters, before executing the gfi-testing-tool it is required that the
communications hub deamon is started. An example for starting the communications hub daemon is in
Figure 5. More information about the communications hub can be found in Section 4

Figure 5 – GFI communications hub command line invocation example.

2.5 Results Analysis

After execution is complete a number of output artefacts (described in Section 2.3) are produced and the
results analysis may be performed. On the console output a configurable execution information set is
shown including the overall test result: PASS/FAIL.

An output log is generated with all the information of the Test execution. This log is customisable and all
the information about its configurations and options can be found in Section 5.6 (Execution Log File)

Also, two report files are generated: a raw XML with all the sets, checks, actions, prints and exchanged
messages and a formatted HTML with a human readable appearance. Information on these files is
detailed in Sections 5.3 and 5.4 respectively. These files may be considered the final outputs and contain
the overall PASS/FAIL information as well as the detailed PASS/FAIL for each expected result.

3 Test Setup

Before a Test can be executed, the input artefacts should be to be properly set, namely the Scenario
Configuration file and the specific Test Properties file. Each input artefact is described in each of the
following Sections. A general overview will be presented followed by a detailed description of each of its
components.

Technical Reference Manual DCC Public Page 18 of 89

3.1 Scenario Configuration File

This Section describes the Scenario Configuration file referred to as <scenario-file>.xml. This file contains
all the configurations needed for the Test environment. It is one of the input parameters for the GFI testing
tool and should always be present. In the following subsections a detailed description of all the
components in this file is presented as well as all the configurable options available.

For a complete example of the scenario files, either use the GUI to generate them or look in the
“/opt/gfi/conf” directory on the GFI platform. Within this directory are two example scenario files, one for
the emulated scenario that is complete, and a template that can be used for creating physical scenarios.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE esme_scenario_configuration_physical_campaign >

<scenarioconfiguration>

 <testscenario>

 <default_output class="CAggregOutputter" level="200" name="OutputManager">

 <output class="CATGConsoleOutputter" level="4" name="ConsoleOutputter" />

 <output class="CATGBufferedFileOutputter" level="100" name="FileOutputter" />

 </default_output>

 <configuration_manager class="CDefaultConfigManager" name="ConfigManager">

 <item name="counters_persistency" value="true" />

 <item name="system_datetime" value="2015/01/01 00:00:00" />

 </configuration_manager>

 <scheduler class="CSchedulerTestCaseInterleaving" name="Scheduler" />

 <result_manager class="CGenericResultManager" name="ResultManager" />

 <equipment class="CSimulationManager" name="SimulationManager">

 <period>100</period>

 </equipment>

 <equipment class="CACBEmulator" name="ACBEmulator">

 <timeout_messages>3600000</timeout_messages>

 </equipment>

 <equipment class="CRemotePartyEmulator" name="RPEmulator">

 <timeout_messages>3600000</timeout_messages>

 <store>

 <remote_parties>

 <remote_party>

 <name>Supplier1</name>

 <id>90B3D51F30010000</id>

Figure 6 – Scenario Configuration file overview.

3.1.1 Console and Log Output

This is the component where the output configurations should be set. The <default_output> component
is an aggregator of the execution outputs configuration. There are two configurable execution outputs:
the console output and the execution log file.

The only configurable option available both for console output and execution log file is the verbose level.
The higher the value chosen, the more information will be shown. This parameter may be set using the
attribute “level”.

 <default_output class="CAggregOutputter" level="200" name="OutputManager">

 <output class="CATGConsoleOutputter" level="4" name="ConsoleOutputter" />

 <output class="CATGBufferedFileOutputter" level="100" name="FileOutputter" />

 </default_output>

Figure 7 – Output Configuration overview.

Technical Reference Manual DCC Public Page 19 of 89

The “class” and “name” element should not be changed by the Tester. The element “class” is the class
that will be used in the source code of the testing tool. The element “name” is the name of the object that
will be created from the specified class.

In Figure 7, the verbose level for the console is level=“4”; for the execution log the verbose level is defined
as level=“100”.

Table 2 presents the available options for the verbose level as well as a description about the meaning
of the value and recommended usage.

Verbose
Level Description

0 Only core information will be outputted. Lowest verbose level available.

2 Both core and high criticality information will be outputted/recorded.

4 Core, high and medium criticality information will be outputted/recorded.

6 Core, high, medium and low criticality information will be outputted/recorded.

100 Core, high, medium and low criticality information will be outputted / recorded. Also
non-critical information included only for debug purposes will be outputted / recorded.

Custom Other values can be used, as long as are in the range [0...127].

Table 2 – Available verbose level configuration values.

3.1.2 Test Case Scheduling

This is the component where the scheduling configurations should be set. The Scheduler manages the
order in which each Test Cases is executed. In this component the Tester should configure the attribute
“class” associated with the Scheduler.

 <scheduler class="CSchedulerTestCaseInterleaving" name="Scheduler" />

Figure 8 – Scheduling Configuration overview.

Table 3 presents the available options for the scheduling configuration.

Type Class Description

Test Case
Interleaving

CSchedulerTestCaseInterleaving
All iterations of a Test Case will be executed
sequentially before moving to the next Test Case.

Iteration
Interleaving

CSchedulerIterationInterleaving

One iteration of each Test Case will be executed
sequentially until the last Test Case is reached.
Then the execution will move on to the second
iteration of the first Test Case and so forth.

Table 3 – Available scheduling configuration values.

Technical Reference Manual DCC Public Page 20 of 89

3.1.3 Result Manager

This is the component where the result configurations should be placed. The result manager is
responsible for generating the reports of the Test execution. This is the only option available so far and
produces the raw (XML) and the formatted (HTML) reports described in Sections 5.3 and 5.4. Advice is
made for the Tester to not change this component.

 <result_manager class="CGenericResultManager" name="ResultManager" />

Figure 9 – Result Manager configuration overview.

3.1.4 Simulation Manager

The Simulation Manager component is responsible for the real-time execution coordination of all the
Simulators and equipment. This is a feature of VSIS Core which is not applicable in this scope and
therefore no configuration is required. Nevertheless, the configuration file entry is kept for tool coherence
purposes. Advice is made for the Tester to not change this component.

 <equipment class="CSimulationManager" name="SimulationManager">

 <period>100</period>

 </equipment>

Figure 10 – Simulation Manager configuration overview.

3.1.5 Emulators

Emulators are the software components with coded logic that mimic the behaviour of the real metering
devices, namely ESME, GSME, CHF and KRPs. Even when real metering equipment is used some
emulators are required to reproduce the full system's functionality, such is the case of the KRPs and
ACB.

 <equipment class="CACBEmulator" name="ACBEmulator">

 <timeout_messages>3600000</timeout_messages>

 </equipment>

 <equipment class="CRemotePartyEmulator" name="RPEmulator">

 <timeout_messages>3600000</timeout_messages>

 <store>

 <remote_parties>

 <remote_party>

 <name>Supplier1</name>

 <id>90B3D51F30010000</id>

Figure 11 – Remote Party Emulators configuration overview.

The next sections detail the different types of emulators used in the framework and respective
configurable parameters, however they all share the common “timeout_messages” element that can be
configured to change how long the GFI tool will wait for messages. In most cases, changing the timeout
for the ACB emulator will be sufficient for changing the timeout when waiting for messages from the
meter to be received by the tool.

Access Control Broker

The ACB emulator does not require any particular configurations. Advice is made for the Tester to not
change this component.

 <equipment class="CACBEmulator" name="ACBEmulator">

 <timeout_messages>3600000</timeout_messages>

 </equipment>

Technical Reference Manual DCC Public Page 21 of 89

Figure 12 – ACB Emulator configuration overview.

Remote Party

This component emulates the Known Remote Parties (KRP), for example, Supplier, ACB and Network
Operator. For each KRP there are a number of configuration options available that are nested under the
element <remote_party>.

 <equipment class="CRemotePartyEmulator" name="RPEmulator">
 <timeout_messages>3600000</timeout_messages>

 <corrupted_messages>false</corrupted_messages>

 <store>

 <remote_parties>

 <remote_party>

 <name>Supplier1</name>

 <id>90B3D51F30010000</id>

 <counters>

 <originator_counter>4981</originator_counter>

 </counters>

 <private_keys>

 <digital_signature_file>

 ./conf/smki/org/ZAZ1/key/Z1-supplier-ds.key

 </digital_signature_file>

 <key_agreement_file>

 ./conf/smki/org/ZAZ1/key/Z1-supplier-ka.key

 </key_agreement_file>

 <pre_payment_top_up_file>

 ./conf/smki/org/ZAZ1/key/Z1-supplierPP-ka.key

 </pre_payment_top_up_file>

 </private_keys>

 <certificates>

 <key_agreement_certificate_file>

 ./conf/smki/org/ZAZ1/cert/Z1-supplier-ka.pem

 </key_agreement_certificate_file>

 </certificates>

 </remote_party>

 <remote_party>

 <name>NetworkOperator1</name>

Figure 13 – Remote Party configuration overview.

Although the selection of the Remote Party is made in the Test Properties file (one of the inputs from
Table 1) the definitions for each of them is kept in the Scenario file.

Table 4 presents the configurations available for each KRP.

Name XML element Description

Name <name>
Device name as in GBCS documentation. The
Use Case’s specification uses this name to refer
to the KRP to be used.

ID <id> Entity ID as in GBCS documentation.

Originator
Counter

<originator_counter>
Initial value for the originator counter. Incremented
for each message sent by the KRP.

UTRN
Counter

<utrn_counter> Initial value for the UTRN counter.

Private Keys <digital_signature_file> Path to the .key file containing the private and
public key as provided in the SMKI pack and used

Technical Reference Manual DCC Public Page 22 of 89

Name XML element Description

<key_agreement_file>

<pre_payment_top_up_file>

by the KRP to construct and verify MAC, signature
and pre-payment top up where applicable.

Certificates
<key_agreement_certificate_file>

<digital_signature_certificate_file>

Path to the .crt certificate file as provided in the
SMKI pack. Used for Supplementary Remote
Party operations when applicable.

Force
Corrupted
Messages

<corrupted_messages>

This component forces corruption of GBCS
messages at the atg-testing tool. The message’s
payload will be randomly corrupted before any
cryptographic operation is performed and the Test
Execution report will contain the message’s
original payload in
“GENERAL_SIGNING_MESSAGE::ORIGINAL_
DATA”. The Grouping Header, MAC and
Signature will not be affected.

Table 4 – Remote Party configuration values.

This component also contains information about which Devices the referred Remote Parties are allowed
to communicate with. For each Device there are a number of configurations available that are nested
under the element <device>.

 <devices>

 <device>

 <name>ESME1</name>

 <id>00DB1234567890A0</id>

 <public_keys>

 <digital_signature_certificate_file>

 ./conf/smki/device/device-ee/cert/00db1234567890A0-ds.der

 </digital_signature_certificate_file>

 <key_agreement_certificate_file>

 ./conf/smki/device/device-ee/cert/00db1234567890A0-ka.der

 </key_agreement_certificate_file>

 </public_keys>

 </device>

 <device>

 <name>GSME1</name>

 <id>00DB1234567890A1</id>

 <public_keys>

Figure 14 – Remote Party Devices configuration overview.

Table 5 presents the configurations available for each Device the Remote Party is allowed to
communicate with.

Name XML element Description

Name <name>
Device name as in GBCS documentation. The
Use Case’s specification uses this name to
refer to the Device to be used.

ID <id> Entity ID as in GBCS documentation.

Technical Reference Manual DCC Public Page 23 of 89

Name XML element Description

Public Keys
<digital_signature_certificate_file>

<key_agreement_certificate_file>

Path to the .der file containing the device
certificate, as provided in the SMKI pack.
Used to verify signatures and MAC, also to
decrypt encrypted messages.

Table 5 – Remote Party configuration values.

ESME, GSME,CHF, GPF, PPMID, HCALCS

These components are used only in emulated scenarios. When using real physical devices these
components will not be present in the Scenario Configuration file. For each Device there are a number
of configurations available that are nested under the element <device>. Importantly, it’s used to define
the state of the trust anchor cells, device certificates and the value of select SMETS attributes.

 <equipment class="CESMEEmulator" name="ESMEEmulator">

 <timeout_messages>3600000</timeout_messages>

 <store>

 <devices>

 <device>

 <id>00DB1234567890A0</id>

 <counters>

 <originator_counter>2000</originator_counter>

 </counters>

 <private_keys>

 <digital_signature_file>

 ./conf/smki/device/device-ee/key/00db1234567890A0-ds.key

 </digital_signature_file>

 <key_agreement_file>

 ./conf/smki/device/device-ee/key/00db1234567890A0-ka.key

 </key_agreement_file>

 </private_keys>

 <certificates>

Figure 15 – Device emulator configuration overview.

Table 6 presents the configurations available for each Device emulator.

Name XML element Description

ID <id> Entity ID as in GBCS documentation.

Originator
Counter

<originator_counter>
Initial value for the originator counter.
Incremented for each message sent by the
Device.

Private Keys
<digital_signature_file>

<key_agreement_file>

Path to the .key file containing the private and
public key, as provided in the SMKI pack and
used by the Device to construct and verify
MAC, signature and encrypt sensitive data.

Certificates
<digital_signature_certificate_file>

<key_agreement_certificate_file>

Path to the .der file containing the device
certificate, as provided in the SMKI pack.
Used to be provided to a KRP upon request.

Technical Reference Manual DCC Public Page 24 of 89

Name XML element Description

Certification
Request

<digital_signature_certificate_file>

<key_agreement_certificate_file>

Path to the .csr file, as provided in the SMKI
pack . Used to be provided to a KRP upon
request for certification issuing.

Trust Anchor Cell
Name

<name>
KRP name, the certificate name and the role
separated by commas.

Trust Anchor Cell
Remote Party
Role

<remote_party_role>
The class value of Remote Party in relation to
the Device is capable of storing Security
Credentials, as specified in GBCS.

Trust Anchor Cell
Key Usage

<key_usage>
The key usage value of Remote Party in
relation to the Device is capable of storing
Security Credentials, as specified in GBCS.

Trust Anchor Cell
Cell Usage

<cell_usage>
The cell usage value of Remote Party in
relation to the Device is capable of storing
Security Credentials, as specified in GBCS.

Trust Anchor Cell
Certificate

<certificate_file>

Path to the .crt file containing the KRP
certificate, as provided in the SMKI pack.
Used by the Device to verify MAC, signature
and decrypt sensitive data.

SMETS Object
Storage

<smets>
Data regarding the SMETS objects used by
the emulator in an emulated scenario.

Table 6 – Meter Device emulator configuration values.

Some SMETS Objects require Storage for purposes of Test Case sequencing where emulated metering
devices are used. These objects will be kept nested under the element <smets> as shown in Figure 16.

 <smets>

 <DeviceLogEntries>[

 {

 "DeviceEntityIdentifier": "01 02 03 04 05 06 07 08",

 "DeviceType": 3

 },

 {

 "DeviceEntityIdentifier": "00 DB 12 34 56 78 90 99",

 "DeviceType": 3

 },

 {

 "DeviceEntityIdentifier": "00 DB 12 34 56 78 90 97",

 "DeviceType": 5

 }

]</DeviceLogEntries>

 <MeterBalance>100</MeterBalance>

 <MeterBalance_value>250000</MeterBalance_value>

 <PaymentMode_value_PaymentMode>2</PaymentMode_value_PaymentMode>

 <RMSVoltageSagThreshold_threshold>216</RMSVoltageSagThreshold_threshold>

Figure 16 – Meter Device emulator store model overview.

Technical Reference Manual DCC Public Page 25 of 89

CHF

This component emulates the Communications Hub Function and should only be present when running
an emulated scenario. The information configurable in this component follows the same tract as the
ESME and GSME emulator components. That is, defines the security certificates and keys, and the
relevant CHTS attributes.

Technical Reference Manual DCC Public Page 26 of 89

 <equipment class="CCHFEmulator" name="CHFEmulator">

 <timeout_messages>3600000</timeout_messages>

 <store>

 <devices>

 <device>

 <id>00DB1234567890A2</id>

 <counters>

 <originator_counter>4000</originator_counter>

 </counters>

 <private_keys>

 <digital_signature_file>

 ./conf/smki/device/device-ee/key/00db1234567890A2-ds.key

 </digital_signature_file>

 <key_agreement_file>

 ./conf/smki/device/device-ee/key/00db1234567890A2-ka.key

 </key_agreement_file>

 </private_keys>

Figure 17 – CHF Emulator configuration overview.

Table 7 describes the configurable options for the emulated CHF component.

Name XML element Description

ID <id> Entity ID as in GBCS documentation.

Originator
Counter

<originator_counter>
Initial value for the originator counter.
Incremented for each message sent by the
Device.

Private Keys
<digital_signature_file>

<key_agreement_file>

Path to the .key file containing the private and
public key, as provided in the SMKI pack and
used by the Device to construct and verify
MAC, signature and encrypt sensitive data.

Certificates
<digital_signature_certificate_file>

<key_agreement_certificate_file>

Path to the .der file containing the device
certificate, as provided in the SMKI pack.
Used to be provided to a KRP upon request.

Certification
Request

<digital_signature_certificate_file>

<key_agreement_certificate_file>

Path to the .csr file, as provided in the SMKI
pack . Used to be provided to a KRP upon
request for certification issuing.

Trust Anchor Cell
Name

<name>
KRP name, the certificate name and the role
separated by commas.

Trust Anchor Cell
Remote Party
Role

<remote_party_role>
The class value of Remote Party in relation to
the Device is capable of storing Security
Credentials, as specified in GBCS.

Trust Anchor Cell
Key Usage

<key_usage>
The key usage value of Remote Party in
relation to the Device is capable of storing
Security Credentials, as specified in GBCS.

Technical Reference Manual DCC Public Page 27 of 89

Name XML element Description

Trust Anchor Cell
Cell Usage

<cell_usage>
The cell usage value of Remote Party in
relation to the Device is capable of storing
Security Credentials, as specified in GBCS.

Trust Anchor Cell
Certificate

<certificate_file>

Path to the .crt file containing the KRP
certificate, as provided in the SMKI pack.
Used by the Device to verify MAC, signature
and decrypt sensitive data.

CHTS Object
Storage

<chts>
Data regarding the CHTS objects used by the
emulator in an emulated scenario.

Table 7 – CHF emulator configuration values.

The CHTS attributes that are supported by the CHF emulator are as in Figure 18, and described in
Table 8.

 <chts>

 <DeviceIdentifierCHF>xyz</DeviceIdentifierCHF>

 <FirmwareVersion_value>1234</FirmwareVersion_value>

 <DeviceLogCHF_hanIdentifier>

 00 01 02 03 04 05 06 07

 </DeviceLogCHF_hanIdentifier>

 <DeviceLogCHF_entries>

 <entry>

 <entityIdentifier>

 00 DB 12 34 56 78 90 A0

 </entityIdentifier>

 <installationCredentials>

 83 FE D3 40 7A 93 97 23 A5 C6 39 B2 69 16 D5 06

 </installationCredentials>

 <deviceType>0</deviceType>

 </entry>

 <entry>

 <entityIdentifier>00 DB 12 34 56 78 90 A1</entityIdentifier>

 <installationCredentials>

 83 FE D3 40 7A 93 97 23 A5 C6 39 B2 69 16 D5 05

 </installationCredentials>

 <deviceType>1</deviceType>

 </entry>

 </DeviceLogCHF_entries>

 </chts>

Figure 18 – CHTS Attributes.

Name XML element Description

CHTS Object Storage <chts>
Data regarding the SMETS objects used
by the CHF.

CHTS Entries

Entity Identifier
<entityIdentifier>

Entity Identifier of the Device in the
Whitelist of the CHF.

CHTS Entries <installationCredentials>
Installation credentials (installation code)
of the Device in the Whitelist of the CHF.

Technical Reference Manual DCC Public Page 28 of 89

Name XML element Description

Installation Credentials

CHTS Entries

Device Type
<deviceType> Type of device in the Whitelist of the CHF.

Table 8 – CHTS attributes configuration values.

GPF

This component emulates the Gas Proxy Function and should only be present when running an emulated
scenario where the GSME emulated component is also present. The information configurable in this
component follows the same tract as the ESME and GSME emulator components. That is, defines the
security certificates and keys. However, as the GPF will mirror the SMETS data on the GSME, many of
the SMETS attributes do not need to be defined in this component.

 <equipment class="CGPFEmulator" name="GPFEmulator">
 <timeout_messages>3600000</timeout_messages>

 <store>

 <mirrorid>00DB1234567890A1</mirrorid>

 <devices>

 <device>

 <id>00DB1234567890A3</id>

 <counters>

 <originator_counter>3000</originator_counter>

 </counters>

 <private_keys>

 <digital_signature_file>

 ./conf/smki/device/device-ee/key/00db1234567890A3-ds.key

 </digital_signature_file>

 <key_agreement_file>

 ./conf/smki/device/device-ee/key/00db1234567890A3-ka.key

 </key_agreement_file>

 </private_keys>

Figure 19 – GPF Emulator configuration overview.

In addition to Table 6, Table 9 presents the new configuration options for the GPF.

Name XML element Description

Mirror ID <mirrorid> Entity ID of the GSME being mirrored.

Table 9 – GPF emulator configuration values.

The only supported SMETS attributes for the GPF emulator is the device log. This is represented as
depicted in Figure 20.

Technical Reference Manual DCC Public Page 29 of 89

 <smets>

 <DeviceLogEntries>[

 {

 "DeviceEntityIdentifier": "01 02 03 04 05 06 07 08",

 "DeviceType": 6

 },

 {

 "DeviceEntityIdentifier": "00 DB 12 34 56 78 90 99",

 "DeviceType": 5

 },

 {

 "DeviceEntityIdentifier": "00 DB 12 34 56 78 90 97",

 "DeviceType": 5

 }

]

 </DeviceLogEntries>

 </smets>

Figure 20 – GPF Emulator device log.

3.1.6 Client

The CHF client is used in-situ of the respective emulator when running a test against physical meters
using the gfi-comms-hub. Since previous versions of GFI, the CHF section no longer contains all the
ZigBee related configuration as it is now part of the Communications Hub.

CHF

This component configures the Communications Hub client and should only be present when running a
scenario with physical devices. The information configurable in this component is slightly different as the
actual configuration of the CHF is part of the communication hub daemon.

 <equipment class="CCHFClient" name="CHFClient">

 <chf_port>50001</chf_port>

 <store>

 <devices>

 <device>

 <id>00DB1234567890A2</id>

 <counters>

 <originator_counter>4000</originator_counter>

 </counters>

 <private_keys>

 <digital_signature_file>

 ./conf/smki/device/device-ee/key/00db1234567890A2-ds.key

 </digital_signature_file>

 <key_agreement_file>

 ./conf/smki/device/device-ee/key/00db1234567890A2-ka.key

 </key_agreement_file>

 </private_keys>

 <certificates>

 <digital_signature_certificate_file>

 ./conf/smki/device/device-ee/cert/00db1234567890A2-ds.der

 </digital_signature_certificate_file>

 <key_agreement_certificate_file>

 ./conf/smki/device/device-ee/cert/00db1234567890A2-ka.der

 </key_agreement_certificate_file>

 </certificates>

Figure 21 – CHF Client configuration overview.

Technical Reference Manual DCC Public Page 30 of 89

Table 10 presents the new configuration options for the CHF. By design, all cryptography and message
protections are handled by the GFI testing tool, thus the CHClient is required to be configured with CHF
credentials and the relevant trust anchor cells.

Name XML element Description

CHF Control Port <chf_port>

Used by GFI for controlling the
Communications Hub, the port should
align with the CH configuration file. The
default value for this is 50001, and
should only be changed if there is a
need.

ID <id>

Should be the same as the CHF ID in
the CH configuration file. This attribute
should be different from the CH IEEE
radio address.

Table 10 – CHF emulator configuration values.

3.2 Test Properties File

This Section describes the Test Properties file referred to as <properties-file>.xml. This file contains all
the Test Cases that constitute the Test as well as information regarding the Test procedure, like the Test
name, identifier and purpose. Any other information can be added to the Test Properties file as explained
in the following subsections, for instance the Manufacturer’s Device name, the Device firmware version,
etc. This information will be added to the Test Report as is. In the following subsections a detailed
description of all the components in this file is presented.

Technical Reference Manual DCC Public Page 31 of 89

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE executionconfiguration []>

<executionconfiguration>

 <testmanager master_node="svfmaster">

 <testspec class="CTestSpec" name="ATG-TEST-ECS40">

 <report>

 <item name="USE CASE">ECS40</item>

 <item name="TEST ID">ATG-TEST-ECS40</item>

 <item name="TEST PURPOSE">Test Use Case ECS40 Read MPAN Value on the

ESME", which is for reading the MPAN on the ESME.</item>

 </report>

 <testcase class="CTestCaseECS40" name="ATG-TC-ECS40">

 <report>

 <item name="TEST CASE ID">ATG-TC-ECS40</item>

 <item name="TEST CASE PURPOSE">The purpose of this test case is to

validate Use Case ECS40 "Read MPAN Value on the ESME" by validating the

construction of the command used for reading the power registers on the ESME and its

respective response.</item>

 <item name="TEST CASE ASSUMPTIONS AND CONSTRAINTS">GIST Issue #3145:

"ECS40 - Notes for attribute MeterPointAdministrationNumber(combinedMPANS)"</item>

 <item name="AUTHOR">CSW</item>

 <item name="VERSION">01</item>

 </report>

 <resource_combiner class="CLinearCombinations" name="linearCombinator"/>

 <resourcepool class="CResourcePoolString" name="BusinessOriginatorName">

 <value>ACB</value>

 <value>Supplier1</value>

 </resourcepool>

 <resourcepool class="CResourcePoolString" name="BusinessTargetName">

 <value>ESME1</value>

 <value>ESME1</value>

 </resourcepool>

Figure 22 – Test Properties file overview.

3.2.1 Report Information

This component, identified by <report> in Figure 22, holds the information to be printed in the Test Report.
The names of the fields are rather self-explanatory (Use Case, Test ID, test purpose) regarding the
information they should store. The Tester is free to include any other information that is required to be
added to the Test Report. This information is printed as is, without any type of validation.

The same applies for each Test Case. The component <report> is also supported and any type of
information can be added to it. Figure 23 presents an example of such information, namely Test Case
ID, Purpose, Assumptions and Constraints, Author and Version as shown in Figure 23 below.

Technical Reference Manual DCC Public Page 32 of 89

 <testspec class="CTestSpec" name="ATG-TEST-ECS40">

 <report>

 <item name="USE CASE">ECS40</item>

 <item name="TEST ID">ATG-TEST-ECS40</item>

 <item name="TEST PURPOSE">Test Use Case ECS40 Read MPAN Value on the

ESME", which is for reading the MPAN on the ESME.</item>

 </report>

 <testcase class="CTestCaseECS40" name="ATG-TC-ECS40">

 <report>

 <item name="TEST CASE ID">ATG-TC-ECS40</item>

 <item name="TEST CASE PURPOSE">The purpose of this test case is to

validate Use Case ECS40 "Read MPAN Value on the ESME" by validating the

construction of the command used for reading the power registers on the ESME and its

respective response.</item>

 <item name="TEST CASE ASSUMPTIONS AND CONSTRAINTS">GIST Issue #3145:

"ECS40 - Notes for attribute MeterPointAdministrationNumber(combinedMPANS)"</item>

 <item name="AUTHOR">CSW</item>

 <item name="VERSION">01</item>

 </report>

Figure 23 – Test Properties Report Information overview.

3.2.2 Resource Combiner

The Resource Combiner, identified by <resource_combiner> in Figure 24, allows the generation of Test
Case iterations based on the combinations of the elements in each resource pool. In the scope of
ATG/GFI no automatic combinations are used. Instead, a Linear Combiner is used, meaning that no
combination is made using the resource pools of the Test Case. Any required resource combination
should be added manually by inserting a new value in each resource pool entry. Advice is made for the
Tester to not change this component.

 <resource_combiner class="CLinearCombinations" name="linearCombinator"/>

Figure 24 – Test Properties Resource Combiner overview.

3.2.3 Resource Pool

These are the parameters to be used in the Test Case, identified by <resourcepool> in Figure 25. They
are used as Inputs to build the Command messages or Expected Results to perform checks in the
Response message fields. Using the Linear Combiner, each iteration will use the respective data element
of each resource pool in an orderly fashion. Thus, every resource pool should have the same number of
data elements. Please note that for date-time related parameters (e.g., executionDateTime) it is
possible to use the values “NOW” and “NEVER” which will apply a date-time based in sections 9.2.2.4
and 9.2.2.5 of GBCS, respectively.

 <resourcepool class="CResourcePoolString" name="BusinessOriginatorName">

 <value>ACB</value>

 <value>Supplier1</value>

 </resourcepool>

 <resourcepool class="CResourcePoolString" name="BusinessTargetName">

 <value>ESME1</value>

 <value>ESME1</value>

 </resourcepool>

Figure 25 – Test Properties Resource Pool overview.

Technical Reference Manual DCC Public Page 33 of 89

3.2.4 Test Repetition

This component, identified by <run> in Figure 26, is used by the framework to execute a Test a specified
number of times using the attribute “times” (e.g. for stress testing or performance purposes).

 <resourcepool class="CResourcePoolString"

 name="MeterAdministrationPointNumber(exportMPAN).result">

 <value>0</value>

 <value>0</value>

 </resourcepool>

 </testcase>

 </testspec>

 <run times="1" />

 </testmanager>

</executionconfiguration>

Figure 26 – Test Repetition Counter overview.

Technical Reference Manual DCC Public Page 34 of 89

4 Communications Hub

The Communications Hub is a separate piece of software from the main testing tool, and intended to run
as a daemon, which instances of the GFI testing tool will connect to and request it to proxy messages
back and forth to the end device on the HAN.

This section describes the configuration of the Communications Hub and how to interact with the
daemon.

4.1 Configuration File

The Communications Hub has a singular configuration file. This file is responsible for defining the ZigBee
network and any pre-configured HAN whitelist (the whitelist can be updated using CCS0x usecases,
please refer to GBCS for more information).

The best way to get a sample configuration file is to use the GUI to configure a Communications Hub
and use the export function to save the configuration to a XML file as show in Figure 27 – Export
Communications Hub configuration file.

Figure 27 – Export Communications Hub configuration file.

Proviso:

When configuring the CH, please ensure the following:

• CHF EUI64 is virtual, the user is recommended to select a unique ID from the DCC SMKI provided
with GFI (located at /opt/gfi/conf/smki/device/).

• GPF EUI64 is the CH IEEE radio address, as displayed on the GFI kit yellow label.

4.1.1 Interfaces Configuration

<CommsHubConfiguration>

 <Port>/dev/ttyUSB0</Port>

 <BaudRate>57600</BaudRate>

 <FlowControl>rtscts</FlowControl>

 <ControlPort>50000</ControlPort>

 <CHFPort>50001</CHFPort>

 <SCPICHFPort>50002</SCPICHFPort>

 <FirmwareVersion>GFIv2.0</FirmwareVersion>

 <TimeoutMessages>3600000</TimeoutMessages>

Technical Reference Manual DCC Public Page 35 of 89

Figure 28 – Interfaces configuration overview.

The configurable options are described in Table 11.

Name XML element Description

CHF Control Port ControlPort

TCP port used for controlling the
daemon. For example, the GUI uses it to
get a list of which devices are on the
HAN. Suggested to use 50000.

CHF data Port CHFPort

TCP port to which the gfi-testing-tool
CHFClient connects. Used for
transferring GBCS messages.
Suggested to use 50001.

SCPI CHF SCPICHFPort

TCP port to which an external tool can
connect as a CHFClient and use SCPI
syntax for TCP message exchange.
Used for transferring GBCS messages.

Suggested to use 50002.

Serial Port Port
The serial port where the USB ZigBee
adapter is connected.

Serial port speed BaudRate

Speed of the serial port where the USB
ZigBee adapter is connected. Depends
on the apater firmware configuration.
Default is 57600.

Serial port Flow Control FlowControl
The type of flow control to use in the
serial port.

Table 11 – Interfacesconfiguration values.

4.1.2 HAN Configuration

 <ZigbeeNetwork>

 <PanId>1234</PanId>

 <ExtendedPanId>0011223344556677</ExtendedPanId>

 <NetworkKey>22222222222222222222222222222222</NetworkKey>

 <PermitJoin>1</PermitJoin>

 <EndDeviceTimeout>5</EndDeviceTimeout>

 <JoinTimeout>255</JoinTimeout>

 <GHzChannel>11</GHzChannel>

 <SubGHzChannel>2</SubGHzChannel>

 <SubGHzBand>863-876MHz</SubGHzBand>

 <GHzRadioTxPower>3</GHzRadioTxPower>

 <SubGHzRadioTxPower>3</SubGHzRadioTxPower>

 <Mode>Dual</Mode>

 </ZigbeeNetwork>

Figure 29 – CH Configuration overview.

The configurable options are described in Table 12.

Technical Reference Manual DCC Public Page 36 of 89

Name XML element Description

ZigBee Network

Pan ID
PanID The ZigBee network Pan ID

ZigBee Network

Extended Pan ID
ExtendedPanID The ZigBee network extended Pan ID

ZigBee Network

Network Key
NetworkKey The ZigBee network key

ZigBee Network

Permit Join
PermitJoin

Allows the join of devices to the HAN (or
not).

ZigBee Network

Join Timeout
JoinTimeout The join timeout, specified in seconds.

ZigBee End-Device
timeout

EndDeviceTimeout

Timeout for end-devices after which the
parent removes it from the end childs list
and devide needs to rejoin network. For
compatibility with end devices using NXP
stacks, it is recommended to set it to 90
min.

ZigBee Network
Channel for 2.4GHz

GHzChannel
The ZigBee network channel for 2.4GHz.
Suggested to use a ZSE preferred channel
when possible.

ZigBee Network Tx
power for 2.4GHz

GHzRadioTxPower
The power of radio for transmitting data
over the 2.4GHz

ZigBee Network band
for subGHz

SubGHzBand
The band of subGHz to use. Low band
(838-876MHz) or high band (915-921MHz)

ZigBee Network
Channel for subGHz

SubGHzChannel
The ZigBee network channel for subGHz.
Low band (0-48), high band (0-12)

ZigBee Network Tx
power for subGHz

SubGHzRadioTxPower
The power of radio for transmitting data
over the subGHz

ZigBee Network Mode Mode
The ZigBee network mode to form (GHz,
SubGHz or Dual). Default: Dual

Table 12 – CH HAN configuration values.

4.1.3 GPF configuration

The GPF configuration consists in the GFI ID, its private key and remote parties
certificates.See Figure 30 for an example. Several TrustAnchorCell elements can be included
under TrustAnchorCells

<GPF>

 <Id>00DB1234567890A3</Id>

 <PrivateKeys>

 <KeyAgreementFile>./conf/smki/device/device-ee/key/00db1234567890A3-ka.key</KeyAgreementFile>

 <DigitalSignatureFile>./conf/smki/device/device-ee/key/00db1234567890A3-ds.key</DigitalSignatureFile>

 </PrivateKeys>

 <TrustAnchorCells>

 <TrustAnchorCell>

Technical Reference Manual DCC Public Page 37 of 89

 <Name>Root, Key Cert, Management</Name>

 <RemotePartyRole>0</RemotePartyRole>

 <KeyUsage>32</KeyUsage>

 <CellUsage>0</CellUsage>

 <CertificateFile>./conf/smki/org/ZAZ1/cert/OCARoot-ZA.pem</CertificateFile>

 </TrustAnchorCell>

 </TrustAnchorCells>

</GPF>

Figure 30 – GPF Configuration overview.

The configurable options are described in Table 13.

Name XML element Description

GPF EUI64 Id
Entity ID as in GBCS documentation,
see proviso above.

GPF Key Agreement KeyAgreementFile
The path relative to the running directory
for the private key agreement file to

GPF Digital Signature DigitalSignatureFile
The path relative to the running directory
for the digital signature file to

GPF TrustAnchorCell
name

Name
Identification of a Trust Anchor Cell
{remotePartyRole, keyUsage, cellUsage}
See GBCS

GPF TrustAnchorCell
remote party role

RemotePartyRole
Identifyes the Remote Party Role this
Cell relate to. See GBCS

GPF TrustAnchorCell
Key Usage

KeyUsage
Identifyes the cryptographic use of the
Public Key in this Cell. See GBCS

GPF TrustAnchorCell
Cell Usage

CellUsage
Identifyes the Public Keys of the same
keyUsage for the same Remote Party
Role. See GBCS

GPF TrustAnchorCell
Certificate

CertificateFile
The path relative to the running directory
for the certificate file

Table 13 – GPF configuration values.

4.1.4 CHF configuration

The CHF configuration consists in the CHF ID, its private key and remote parties
certificates.See Figure 31 for an example. Several TrustAnchorCell elements can be included
under TrustAnchorCells

<CHF>

 <Id>00DB1234567890A2</Id>

 <OtaStorage>/home/Desktop/ota-files</OtaStorage>

 <PrivateKeys>

 <KeyAgreementFile>./conf/smki/device/device-ee/key/00db1234567890A2-ka.key</KeyAgreementFile>

 <DigitalSignatureFile>./conf/smki/device/device-ee/key/00db1234567890A2-ds.key</DigitalSignatureFile>

 </PrivateKeys>

 <TrustAnchorCells>

 <TrustAnchorCell>

 <Name>Root, Key Cert, Management</Name>

 <RemotePartyRole>0</RemotePartyRole>

Technical Reference Manual DCC Public Page 38 of 89

 <KeyUsage>32</KeyUsage>

 <CellUsage>0</CellUsage>

 <CertificateFile>./conf/smki/org/ZAZ1/cert/OCARoot-ZA.pem</CertificateFile>

 </TrustAnchorCell>

 </TrustAnchorCells>

</CHF>

Figure 31 – CHF Configuration overview.

Technical Reference Manual DCC Public Page 39 of 89

The configurable options are described in Table 14.

Name XML element Description

CHF EUI64 Id
Entity ID as in GBCS documentation,
see proviso above.

CHF OTA Storage OtaStorage

The absolute path to the folder that
stores the OTA images to send to the
devices.

This field is optional and the default path
is: /opt/gfi/ota-files

CHF Key Agreement KeyAgreementFile
The path relative to the running directory
for the private key agreement file to

CHF Digital Signature DigitalSignatureFile
The path relative to the running directory
for the digital signature file to

CHF TrustAnchorCell
name

Name
Identification of a Trust Anchor Cell
{remotePartyRole, keyUsage, cellUsage}
See GBCS

CHF TrustAnchorCell
remote party role

RemotePartyRole
Identifyes the Remote Party Role this
Cell relate to. See GBCS

CHF TrustAnchorCell
Key Usage

KeyUsage
Identifyes the cryptographic use of the
Public Key in this Cell. See GBCS

CHF TrustAnchorCell
Cell Usage

CellUsage
Identifyes the Public Keys of the same
keyUsage for the same Remote Party
Role. See GBCS

CHF TrustAnchorCell
Certificate

CertificateFile
The path relative to the running directory
for the certificate file

Table 14 – CHF configuration values.

4.1.5 CHF Device Log

It is possible to pre-configure a device log in the configuration file for the Communications Hub, this is
achieved by adding the “DeviceLogCHFEntries” element to the configuration file, which can contain a
number of device log entries. See Figure 50 for an example, and Table 15 for an explanation.

 <DeviceLogCHFEntries>

 <Entry>

 <EntityIdentifier>00DB1234567890A1</EntityIdentifier>

 <InstallationCredentials>83FED3407A939723A5C639B200000000</InstallationCredentials>

 <DeviceType>0</DeviceType>

 </Entry>

 </DeviceLogCHFEntries>

</CommsHubConfiguration>

Figure 32 – CH Device Log configuration overview.

Name XML element Description

Entity Identifier <entityIdentifier>
Entity Identifier of the Device in the
Whitelist of the CHF.

Technical Reference Manual DCC Public Page 40 of 89

Name XML element Description

Installation Credentials <installationCredentials>

Installation credentials (installation code)
of the Device in the Whitelist of the CHF.
The following are supported: 8-byte
install, 10-byte install (8+CRC), 16-byte
install, and 18-byte install (16 + CRC).

Device Type <deviceType>

Type of device in the Whitelist of the CHF.
The supported values are: 0 for ESME, 1
for GSME, 13 for ALCS, 128 for IHD, 130
for CAD, 132 for PPMID.

Table 15 – CH Device Log attributes configuration values.

4.2 Execution

Before starting the communications hub, please ensure that the ZigBee radio is attached to the computer,
and that the configuration file has been created. The simplest execution of the tool is shown in Figure 33,
where the user has first navigated to “/opt/gfi/”

Figure 33 – GFI communications hub command line invocation example.

The usage of the tool is as follows, where the supported options are described in Table 16:

 gfi-comms-hub <configuration-file.xml> [options]

Option Description

configuration-file.xml The configuration file, as specified by Section 4.1.

--loglevel=n Sets the console log level to level n, defaults to 4 if not specified.

--logdir=dir
Sets the directory where the logfiles will be saved, defaults to
current directory if not specified. If existing log files are located in
the same directory, they will be removed when the tool runs.

--version Display the tool version

--hard-start
Sets the hard start mode. The CH will not have any previous run
information, so it will not restore the HAN.

Technical Reference Manual DCC Public Page 41 of 89

Option Description

--soft-start
Sets the soft start mode. The CH will have the previous run
information and will restore the HAN.

Table 16 – CH command line options.

The tool will launch a command line interface through TCP and the user can access it using the command
‘telnet ip port’ as shown in Figure 34.

The default port is 49999 but can be changed by modifying the “TelnetPort” field on the comms-hub
configuration file as shown in Figure 32.

Figure 34 – GFI communications hub command line.

The option ‘?’ shows the available commands as shown in figure 35.

Technical Reference Manual DCC Public Page 42 of 89

Figure 35 - GFI communications hub command line menu.

Some of the available commands have sub-commands which can be used by typing the command and
then ‘?’. All the following options and/or arguments for the command will be displayed as shown in Figure
36.

Figure 36 - Command options and arguments

The TAB key will autocomplete the commands whenever possible or show all the following options
available if pressed twice after the main command is complete.

Technical Reference Manual DCC Public Page 43 of 89

Its also possible to access the stack CLI using the command ‘switch-cli’. The command ‘custom switch-
cli’ switches to the default CLI.

Please note that this menu is intended for issues debugging only since some commands may interfere
with the expected comms hub logic and therefore we strongly discourage to use it in a regular situation.

Most of the commands available through this menu are also available using GBCS usecases.

4.3 Logging

When running the Communications Hub from a terminal window, the application will print to stdout log
information, up to and including the level specified by the command line parameter “--loglevel”.

However, all levels will be saved to the log file, that will be located in the directory specified by the “--

logdir” command line parameter.

The format of the terminal logging, and the log files are the same as those used by the GFI testing tool,
with the exception that instead of using a timestamp relative to when the application started it uses the
system time. See Figure 37 for an example of this.

Figure 37 – GFI communications hub command line output.

4.4 Control Port

It is possible to interact with the Communications Hub over the control port. This mechanism is used by
the GUI to request state information, and thus should not be attempted when the GUI is running, and is
documented to support integration of the tool into end-user test environments.

The control port works by using JSON over TCP. The port used is that identified by the ControlPort
element in the configuration file, normally port 50000 is used.

Some of the commands respond with JSON, others perform actions on the device. Currently, several
commands are supported. See Table 17 for an overview.

Technical Reference Manual DCC Public Page 44 of 89

Name Parameters Output

exit none Success/Failure

getKeyTable none Yes, JSON object representing the Key Table.

addDevice

eui

installationCredentials

deviceType

Success/Failure

removeDevice Eui Success/Failure

unJoinDevice Eui Success/Failure

getStackVersion none Yes, JSON with stack version from NCP and Host

getCHTime none
Yes, JSON with current time in Communications
Hub

syncTimeWithOS none Success/Failure

setCHTime
Date

Time
Success/Failure

soft-stop none Success/Failure

hard-stop none Success/Failure

getZigbeeInfo none
Yes, JSON object with the requested values:
subGhzChannel, subGhzPage, ghzChannel, nwk,
panId and extendedPanId.

getDeviceInfo none
Yes, JSON object with the requested values: chfId
and gpfId.

Table 17 – CH control port actions.

The following sections provide example executions of these commands. In all the following examples,
the program nc is used only for demonstration purposes. The purpose of the program opens a TCP

stream to the Communications Hub. It would also be possible to run the control commands from
another computer connected to the network.

4.4.1 Exit

Requests that the application exits.

Figure 38 – Control Port – Exit command.

Technical Reference Manual DCC Public Page 45 of 89

4.4.2 Get Key Table

Requests the key table currently in use in the Communications Hub and the device association status.
In the picture below, json_pp is only used to pretty print the JSON result for presentation purposes and

is not required.

Figure 39 – Control Port – Get Key Table command.

4.4.3 Add Device

Requests the specified device is added to the Communications Hub’s Device Log. For this command,
the format of the installation credentials parameter is important, and must have spaces between each
byte.

Figure 40 – Control Port – Add Device command.

4.4.4 Remove Device

Requests the specified device is removed from the Communications Hub’s Device Log.

Figure 41 – Control Port – Remove Device command.

Technical Reference Manual DCC Public Page 46 of 89

4.4.5 UnJoin Device

Requests the specified device is unjoined from the HAN, this is so that it can perform the join process
again.

Figure 42 – Control Port – UnJoin Device command.

4.4.6 Get Stack Versions

Request the specified device the stack versions that are in use in NCP and in the Host.

Figure 43 – Control Port – Get Stack Versions command.

4.4.7 Get CH Time

Request the specified device the UTC date and time.

Figure 44 - Control Port - Get CH UTC date and time

4.4.8 Sync CH Time with Operative System

Request the specified device to synchronize the date and time with the Operative System.

Figure 45 - Control Port - Synchronize CH date and time with Operating System

4.4.9 Set CH Time

Request the specified device to set a specified date and time (UTC).

Figure 46 - Control Port - Set CH UTC date and time

Technical Reference Manual DCC Public Page 47 of 89

4.4.10 CH Soft Stop

Request the specified device to stop saving without cleaning previous HAN configuration.

Figure 47 - Control Port - CH Soft Stop

4.4.11 CH Hard Stop

Request the specified device to stop cleaning previous HAN configuration.

4.4.12 Get Zigbee network info

Request the Zigbee network current configuration.

Notes:

If the values to the subGhzChannel and the subGhzPage are -1, this means that subGhz
network was not created.

If the value to the ghzChannel is -1, this means the GHz network was not created.

4.4.13 Get CH device info

Request the GPF and CH Ids.

Figure 48 - Control Port - CH Hard Stop

Technical Reference Manual DCC Public Page 48 of 89

5 Test Execution

Each output artefact is described in each of the following Sections. A general overview will be presented
followed by a detailed description of each of its components.

After a fresh installation of the Operating System provided as part of the GFI tool, the Tester can find the
GFI testing tool at /opt/gfi/.

5.1 Command Line Execution

As briefly stated before, for a Test to be executed the GFI testing tool application should be invoked in
the command line, using the Scenario Configuration file and the Test Properties file as input parameters.
The most common invocation command line is presented in Figure 49. After the testing tool binary
filename, two mandatory arguments must follow. The first one is the Scenario Configuration file and the
second one is the Test Properties file - the Test to be executed (in this example, Use Case ECS40) in
an emulated Scenario.

Figure 49 – GFI testing tool command line execution call.

When the Tester starts the Test execution, the console will show in real time the relevant actions
performed in the Test, with the configured verbose level as presented in Figure 50. The default verbose
level is set to 4, meaning that all the core, high and medium criticality information will be outputted.

Figure 50 – GFI testing tool execution of a Test: console output overview.

Technical Reference Manual DCC Public Page 49 of 89

When the Test execution is complete, an overall PASS/FAIL result will be presented as shown in Figure
51. In the same path where the Test Properties file is located the following outputs will be created:

Output Artefact Description

test-report.xml

The last successfully Test execution report
produced by the tool, in XML format. Every time a
Test is executed this file is deleted and a new one
created.

test-report.html

The last successfully Test execution report
produced by the tool, in HTML format. Every time a
Test is executed this file is deleted and a new one
created.

execution-log.csv

The last successfully Test execution log output in
comma-separated values format. Every time a Test
is executed this file is deleted and a new one
created.

reports/<execution-file>-test-report-<date>.xml
The <execution-file> test report executed in at
<date>, in XML format. This file will never be deleted
by the testing tool.

reports/<execution-file>-test-report-<date>.html
The <execution-file> test report executed in at
<date>, in HTML format. This file will never be
deleted by the testing tool.

logs/<execution-file>-execution-log-<date>.csv
The <execution-file> execution log output in
comma-separated values format. This file will never
be deleted by the testing tool.

Table 18 – Produced output artefacts upon a Test execution completes.

Figure 51 – GFI testing tool overall result overview.

5.2 Command Line Options

Besides the common command line execution, some command line options are available for the Tester
to use. The following sections describes the available command line options, their usage and invocation.

5.2.1 Help

The command line option “--help” displays a help menu, informing the Tester about the mandatory and
optional input parameters. Also a short description of each one of the command line options is provided.
Figure 52 presents the invocation of the tool using this command line option and the corresponding
output.

Technical Reference Manual DCC Public Page 50 of 89

Figure 52 – GFI testing tool invocation using the command line option “--help”.

5.2.2 Version

The command line option “--version” displays the software version of the GFI testing tool. Figure 53
presents the invocation of the testing tool using this command line option as well as the corresponding
output.

Figure 53 – GFI testing tool invocation using the command line option “--version”.

5.2.3 Cryptography

In some situations, it can be useful to disable the rejection of messages due to invalid MAC and Signature
cryptographic verification. For those situations, the command line option “--dcrypto” may be used. When
using this command line option, the GFI testing tool will continue to inform if the MAC and Signature were
successfully verified or not, but in case of unsuccessful verification the response message will continue
to be accepted as if the cryptographic protections would be outputting status OK. Figure 54 presents the
invocation of the tool using this command line option.

Figure 54 – GFI testing tool invocation using the command line option “--dcrypto”.

When calling the tool with this command line option, a warning is presented, informing the Tester that
the rejection of messages due to invalid MAC and Signature was disabled by the Tester.

Technical Reference Manual DCC Public Page 51 of 89

5.2.4 Offline Check

The command line option “--checkmsg” allows the Tester to check offline the cryptographic protections’
status of a previously received response message. The invocation of the testing tool will differ a little bit
from the usual. Figure 56 presents the invocation of the tool using this command line option.

Instead of the Test Properties XML file, a text file (with any extension) containing the response message
to be checked should be used as the second input parameter. Figure 55 presents the contents of the file
“ECS40-response.txt” used as an input in the example bellow.

Figure 55 – Contents of the file with the response message to be checked.

Figure 56 – GFI testing tool invocation using the command line option “--checkmsg”.

At the end of the execution, a PASS/FAIL result is provided as shown in Figure 57.

Figure 57 – Result of the cryptographic verification using the command line option “--checkmsg”.

5.2.5 Verbose Level

The command line option “--loglevel” can be used to override the verbose level of the Console Output
defined in the Scenario Configuration file. This parameter defines the extent to which the verbosity is
detailed. The higher level is defined, the greater amount of information (and less critical) is included in
the logging process. If a log level 4 is defined, all log entries marked with levels 0 through 4 will be logged,
leaving the remaining (greater than 4) unregistered.

Figure 58 presents the invocation of the tool using this command line option. Table 2 presents the
available options for the verbose level as well as a description about the meaning of the value and
recommended usage.

Technical Reference Manual DCC Public Page 52 of 89

Figure 58 – GFI testing tool invocation using the command line option “--loglevel”.

This parameter defines the extent to which the verbosity is detailed. The higher level is defined, the
greater amount of information (and less critical) is included in the logging process. If a log level 4 is
defined in the Scenario Configuration file (Section 3.1.1), all log entries marked with levels 0 through 4
will be logged, leaving the remaining (greater than 4) unregistered.

5.2.6 Output Directory

The command line option “--outputdir” allows the Tester to specify an output path. By default the GFI
testing tool will create all the outputs (log and reports) in the same path of the Test Properties XML file.
With this option the outputs will not be created in the default location but instead in the path provided.
This path can be either absolute or relative, as long as the Tester has permissions to write in the specified
folder, the outputs will be correctly produced. If the path doesn’t exist, the GFI tool creates all the
necessary folders.

Figure 59 presents the invocation of the tool using this command line option.

Figure 59 – GFI testing tool invocation using the command line option “--outputdir”.

5.3 Test Report: XML

This Section describes the Test Report file referred to as <test-report>.xml. This file contains the raw
information from the Test execution, including the input parameters (sets), the computed output
parameters along with the expected results (checks) and all the exchanged messages between the
framework and the device under test. Figure 60 presents an overview of this file.

Technical Reference Manual DCC Public Page 53 of 89

Figure 60 – Test Report XML file overview.

The following sections will detail each of the elements in this file.

5.3.1 Properties

This heading element presents the information of each respective item in the Test Properties file (Section
3.2.1) plus the execution time and date.

Figure 61 – Raw report properties.

5.3.2 Overall Result

This element presents the Test overall PASS/FAIL result. It will be a FAIL should any Test Case on any
iteration fail, otherwise the overall result will be a PASS.

Figure 62 – Raw report overall result.

Technical Reference Manual DCC Public Page 54 of 89

5.3.3 Test Case

Iterations and Steps

These two elements define the number of iterations on the Test Case and the number of steps for the
iteration.

Figure 63 – Raw report iterations and steps overview.

Properties

Holds the Test Case information gathered from the Test Properties file (Section 3.2.1). Each Test Case
block contains one of these elements.

Figure 64 – Raw report Test Case properties overview.

Execution - Iterations and Steps

This nested element presents the execution information. It will nest as many iterations as shown in the
element described in Section 5.3.3 which, in its turn, will nest the Inputs information and the Steps
information (also as many as shown in section 5.3.3).

Inputs

These test inputs refer to the resource pool entries in the Test Properties file (Section 3.2.3). Some of
these elements will be used as input parameters and others as expected values to perform checks on
the Test Case outputs.

Figure 65 – Raw report iteration inputs overview.

Steps

Contain the actions taken in an iteration step. As referred before, they will be in the number defined in
Section 5.3.3, plus two extra steps (Iteration Setup and Iteration Teardown) in case of any Setup or
Clean-up is needed in said iteration.

Technical Reference Manual DCC Public Page 55 of 89

Figure 66 – Raw report steps overview.

Actions and Checks

These are the test actions taken in the test. There are several types, namely:

▪ "SET" to fill in a field in the command message;

▪ "SEND" to issue a command message;

▪ "ACTION" a generic type most commonly used to include waiting times;

▪ "RECEIVE" to store a response message;

▪ "GET" to obtain a response message field value for the purpose of Test Case logic (e.g.
array field size to use in iterating checks);

▪ "PRINT" to perform manual check when automatic checks cannot be implemented and to
include an entire exchanged message in the report.

The attributes in these elements are:

▪ actual="..." for the actual value;

▪ msg="..." to specify the respective message;

▪ time="…" to include a timestamp for the action;

▪ type="…" to select from the previously explained different types of actions.

Figure 67 – Raw report actions and checks overview.

Technical Reference Manual DCC Public Page 56 of 89

As for the checks there is only one type available:

▪ "CHECK" to perform a verification on a response message field against a given expected
result.

This one requires a few more attributes than the ones already described in the Actions:

▪ comparison="..." for the type of check (e.g. equality, inequity, etc.);

▪ description="..." information about the Check (typically to discriminate the parameter being
checked);

▪ expected="…" to print the expected result (the actual result will can be found in
actual="...");

▪ result="…" to print the comparison outcome (PASS / FAIL).

Test Summary

One for each Test Case, contains some statistics (checks performed and passed) and the Test Case
PASS/FAIL status.

Figure 68 – Raw report summary overview.

Technical Reference Manual DCC Public Page 57 of 89

5.4 Test Report: HTML

This Section describes the Test Report file referred to as <test-report>.html

Figure 69 – Test Report (Formatted - html)

This file contains the formatted information from the Test Properties, including the input parameters
(sets), the computed output parameters along with the expected results (checks) and all the exchanged
messages between the framework and the device under test.

In the following subsections a description of this report will be presented along with some references to
the XML elements used to generate each component.

5.4.1 Test Information

This is the Test procedure information, it presents the information of each respective item in the Test
Properties file (Section 3.2.1) plus the execution time and date. It also contains the Overall Result
information.

Technical Reference Manual DCC Public Page 58 of 89

Figure 70 – Test Information

5.4.2 Test Cases Results

The PASS/FAIL result of each Test Case gathered from the collection of checks in the XML elements
described in Section 5.3.3 (Test Summary). This example contains only one test case but a procedure
with N test cases will produce N entries in this report section showing the result for each test case.

Figure 71 – Test Case Results

5.4.3 Test Cases Execution

For each test case in a Test procedure, a group such as this one (following subsections) will be printed
in the report. Like the previous sections, contains the formatted information from the raw test report
described in Section 5.3.3 and subsections. Namely:

Test Case Information

Holds the Test Case information gathered from the Test Properties file (Section 3.2.1). Each Test Case
block contains one of these elements.

This report section contains the information of a given test case See Section 5.3.3 (Properties).

Figure 72 – Test Case Information

Iteration Inputs

These test inputs refer to the resource pool entries in the Test Properties file (Section 3.2.3). Some of
these elements will be used as input parameters and others as expected values to perform checks on
the Test Case outputs. This is the formatted information from Section 5.3.3 (Inputs).

Technical Reference Manual DCC Public Page 59 of 89

Figure 73 – Iteration Inputs

Iterations Execution

This report section presents the execution information (formatted XML report section described in Section
5.3.3 (Execution – Iterations and Steps)). These entries include all the actions, exchanged messages
and performed checks (further information in Section 5.3.3 (Actions and Checks)).

Figure 74 – Iteration Execution

Technical Reference Manual DCC Public Page 60 of 89

Iteration Results Summary

One for each Iteration containing statistics of checks performed and passed and the Test Case
PASS/FAIL status (the PASS/FAIL result of each Iteration’s collection of checks). If all the checks in the
Iteration pass the summary result will be PASS. If any of these checks fail the summary result will be
FAIL.

Figure 75 – Iteration Results Summary

5.4.4 Test Case Results Summary

One for each Test Case, contains some statistics (checks performed and passed) and the Test Case
PASS/FAIL status. See Section 5.3.3 (Test Summary).

Figure 76 – Test Case Results Summary

Technical Reference Manual DCC Public Page 61 of 89

5.5 Console Execution Output

This Section describes the console output.

Figure 77 – CLI Output

The output console shows the standard output and the error messages of the Test execution in a real
time manner. This is useful for monitoring the Test execution. The following Sections will elaborate on
the information and the verbose level.

5.5.1 Time

The timestamp of a log entry. This is relative to the STARTING EXECUTION TIME, at the beginning of
the Test Case execution. It is shown in the format hh:mm:ss.ms.

5.5.2 Area

The logging area that the entry refers to. There are a few predefined areas: Management (MNGE), Report
(RPORT), Test (TEST) and Equipment (EQUIP).

5.5.3 Level

The verbose level associated to the log entry. This could be used for filtering purposes by adjusting the
Scenario Configuration file (Section 3.1).

5.5.4 Message

Description of the log entry. Information regarding the Test action, check or error message being logged.
This information is indented by the number of spaces equivalent to the log level.

Technical Reference Manual DCC Public Page 62 of 89

5.6 Execution Log File

This Section describes the Execution log file referred to as <execution-log>.csv.

Figure 78 – Execution log overview.

This file contains a detailed log of the test execution and its verbose detail is customisable through the
Scenario Configuration file. Besides the sequencer number, which is only present in the execution log,
the information in this file is just about the same as the information buffered through the output of the
system console (Section 5.5) but formatted as coma separated values. This allows further execution
analysis and manual checks. Although the log level is, as referred, customisable, it is highly
recommended that this level is always kept at the maximum available. By default this value is 100. For
detailed information on this file's fields, go through the respective subsections of Section 5.5.

5.6.1 Sequence number

This is a log entry identifier which is incremented for each new entry. A log entry that exceeds the
maximum length is continued in the next line under the same sequence number.

6 Use Case Creation/Upgrade

This section is intended for Advanced Users. Knowledge of object-oriented programming and C++ is
required. Users should keep this in mind.

Should any new Use Cases be considered for implementation the process defined in this section should
be followed. The implemented Use Cases provided with GFI are the ones specified by GBCS v4.0 and
should be enough to build any usage scenario. They represent all the actions that may be undertaken
while communicating with an ESME or GSME. Nevertheless, should any Use Cases suffer changes in
upcoming versions or any new ones arise, the next Sections describe the process to follow, in a step-by-
step fashion.

Technical Reference Manual DCC Public Page 63 of 89

For Use Case upgrading purposes the files described here already exist. In most cases engineering the
files from scratch will be harder work than adapting the existing ones. In any case, the process is the
same as for creating a new one, with the difference that the files described already exist.

Please note that a new or modified Use Case is meant to be used with a real device and for this reason,
such Use Case will not correctly work with GFI emulated devices.

6.1 Process Overview

An overview of the process that should be followed in order to create a new Use Case from scratch is
presented in Figure 79.

Figure 79 – Use Case creation process overview.

The first step (Section 6.2) is to create the Use Case specification, taking as inputs the GBCS, DLMS
(Coloured books) and ZigBee (ZCL and ZSE) specifications. In the first step the User must specify: the
Command, Response and Alert (if applicable) message payloads; the name and value of the Use Case
inputs and expected outputs; and the actions that must be executed in the Test Case.

Once the message payloads, inputs, expected outputs and test case actions are specified, then it is
required to generate all the inputs needed for the next step: Use Case Coding. The Use Case
specification template provided contains easy mechanisms to produce all the data needed for the Coding
phase, namely: the Command Payload XML file, the Response Payload XML file, the Alert Payload XML
file and the XML Execution file.

The next step, Use Case Coding (Section 6.3), is the most demanding step as it requires knowledge of
object-oriented programming and C++. A set of C++ classes must be produced and coded in order to
add the new Use Case to the GFI testing tool Use Case Library. Typically five C++ classes must be
produced: Use Case Base class, Use Case Command class, Use Case Response class, Use Case Alert
class (if applicable) and Test Case class. Also, the Emulators (ESME, GSME and eventually CHF) C++
implementation must be updated to support the new Use Case. In the emulators, the User typically have
to code the Command handler, Response handler and Alert handler (if applicable) methods. After coding

Technical Reference Manual DCC Public Page 64 of 89

all these classes and methods, the Use Case is ready to be compiled and integrated in the GFI testing
tool Library. Once successfully compiled, the Use Case is ready to be executed.

The next step is Use Case Execution (Section 6.4); this is comparatively simple compared to the previous
step. The GFI testing tool is executed with the Execution XML file produced in the first step as one of the
inputs and a HTML report is produced by the tool. See Section 5 for further details.

The last phase of the process is the Use Case Validation (Section 6.5). The User must check if the Use
Case execution succeeded and if all the payloads (Command, Response and Alert) agree with the
GBCS, DLMS and ZigBee specification. In the event of all payloads are according to the specifications,
the job is done, the new Use Case is now available in the GFI Test Library and ready to be integrated in
a Test. If a mismatch is found on the payloads, the User should make the necessary
corrections/modifications in the specification and the process starts all over again from the beginning.

The following sections present a more detailed description of each of the four phases briefly presented
above.

6.2 Use Case Specification

To start, a Use Case Specification document should be produced. This will be used to generate the
prerequisites files for the Use Case Coding and Use Case Execution steps. The files generated from the
Use Case Specification are as follows:

▪ The Use Case Command Payload specification file;

▪ The Use Case Response Payload specification file;

▪ The Use Case Alert Payload specification file (when applicable);

▪ The Use Case Execution file.

6.2.1 Command Payload

The internal message structures used by the GFI testing tool regarding the command message will be
created based on this input. Each element in the message it is tabbed with whitespace, and this should
be kept in mind, for it is used for the hierarchy of these same elements in the structure. The data type,
codec information and codec encoding are also relevant, as they will be used later by the GFI testing tool
to build the internal message structures. As an example, Figure 80 presents an overview of a command
payload specification.

Technical Reference Manual DCC Public Page 65 of 89

Figure 80 – Command Payload overview.

The User should specify the payload structure of the Use Case’s command. For each element in the
message, the User must specify the data type, the associated codec, the codec encoding, the maximum
length of the field (if applicable, meaning the number of bytes) and for bit structures, the bit size, the start
bit and the start byte of the element (fields not visible in the figure).

6.2.2 Response Payload

Like the Command Payload, the information in the Response Payload is essential. The internal message
structures used by the GFI testing tool regarding the response message will be created based on this
input. As before, each element in the message it is tabbed with whitespace, and this should be kept in
mind, for it is used for the hierarchy of these same elements in the structure.The data type, codec
information and codec encoding are also relevant, as they will be used later by the GFI testing tool to
build the internal message structures. As an example, Figure 81 presents an overview of a response
payload specification.

Figure 81 – Response Payload overview.

Technical Reference Manual DCC Public Page 66 of 89

6.2.3 Alert Payload

The format and semantics of the Alert Payload is much the same way as the previous Command and
Response Payloads. It defines the internal message structures used by the GFI testing tool regarding
the alert message. As an example, Figure 82 presents an overview of an alert payload specification.

Figure 82 – Alert Payloa overview.

6.2.4 Use Case Test

The Use Case Test Properties file contains, for each iteration, the input values that will be set and the
expected values against which the output parameters will be checked. As described in Section 3.2.3,
each parameter is composed by one Resource Pool, which contains the input values. To change the
number of iterations, simply add or remove the input values in each Resource Pool. Each parameter,
Resource Pool, must have the same number of inputs. As an example, Figure 84 presents an overview
of one Test Properties with four parameters with one iteration.

Internal vs External Parameters

The GFI testing tool differentiates between two types of parameters: internal and external parameters.

The external parameters are used as input values that will be set in the commands or as expected values
against which the values in the responses will be checked.

The internal parameters are exclusively used in emulated scenarios and are used to control the behaviour
of the GFI Emulators. These internal parameters are sent to Emulators only, using an internal
communication channel and a specific protocol. They also follow a rule for the naming, so it is easy to
identify them: all start with “ATG.Control” and “Control.”. Some examples of use regarding the emulator’s
behaviour control are the following ones:

▪ Switch between Single and Twin element;

▪ Set the type of reply on an Event Log reading (reply with empty or with data log);

▪ Trigger the sending of alerts, namely GNCA, GCA, FDRA, ECS68, …;

▪ Set the error scenario.

Note that these internal messages are not sent nor received by a physical device.

6.2.5 XML Assembling

To create the Payload Specification XML files and the Test Properties XML file use the most similar XML
files from GFI testing tool as template, and change them to produce the Command, Response and Alert
(when applicable) Payload, and Use Case Execution file.

Message’s Payload Specification files

Three XML files containing the specification for the Command, Response and Alert (when applicable)
payload messages. These files will subsequently be used to generate the GFI testing tool structures to

Technical Reference Manual DCC Public Page 67 of 89

support message building, exchanging and encoding/decoding during the Test Case execution. As an
example, Figure 83 presents an overview of an assembled Command Payload XML file.

Figure 83 – Command Payload XML specification file overview.

Test Execution File

An XML file much in every way similar to the one described in Section 3.2. As an example, Figure 84
presents an overview of an assembled Test Properties file.

Technical Reference Manual DCC Public Page 68 of 89

Figure 84 – Test Properties file overview.

6.2.6 Use Case Configuration

On use-cases-messages.xml file from /opt/gfi/conf/usecases directory, add the following structure to
add a custom command, response or alert. The following names (gcs01a and cs14) are merely an
example for explanation purposes.

Figure 85 – Custom Command and Response configuration.

Technical Reference Manual DCC Public Page 69 of 89

 Figure 86 – Custom Alert configuration.

6.2.7 Custom Message Code

Add the new message code on gbcsconstants.h file from /opt/gfi/src/base directory.

Figure 87 – Example of a Message Code definition.

6.2.8 Match Message Code and Message Type

On cgbcsutils.cpp file from /opt/gfi/src/base directory add the corresponding code using the
corresponding message code. This will match the message code and message type (Command,
Response or Alert) to a specific message structure.

Figure 88 – Example of a Custom Use Case matching a Command and a Response.

Figure 89 - Example of a Custom Use Case matching an Alert.

Please note that if the custom Use Case is critical, it is required to add the message code on the
method IsCriticalMessageCode().

Figure 90 – Message Code added to IsCriticalMessageCode() method.

Technical Reference Manual DCC Public Page 70 of 89

6.3 Use Case Coding

The Use Case Coding is the second phase in the process of creating a new Use Case. Knowledge of
object-oriented programming and C++ is required to successfully execute this phase. The framework is
implemented in the C++ language using Eclipse Luna and build over the base libraries of CSW VSIS™.

During this phase, a set of C++ classes must be produced and coded in order to add the new Use Case
to be available for the GFI testing tool Use Case Library. Typically five C++ classes are produced in this
phase:

▪ Use Case Base class;

▪ Use Case Command class;

▪ Use Case Response class;

▪ Use Case Alert class (if applicable);

▪ Test Case class.

The Emulators (ESME, GSME and CHF) classes must be updated to support the new Use Case. In the
emulators, the User typically has to code the Command handler, Response handler and Alert handler (if
applicable) methods. After coding all these classes and methods, the Use Case is ready to be compiled
and integrated in the GFI testing tool Library. Figure 91 presents an overview of the Coding phase. The
following Sections will explain all the sub-phases.

Figure 91 – Use Case Coding phase overview.

Technical Reference Manual DCC Public Page 71 of 89

Figure 92 – Eclipse Luna IDE overview.

6.3.1 Base Class Files

These files are located in the project folder under /src/usecases/<protocol>/ (where <protocol> is
whichever protocol the Use Case relates to: DLMS, ZigBee, ASN1) and must be created manually from
the provided templates. Also, the existing Use Case specifications and code may be used as example to
create these new code files. They are:

c<usecase>usecase.h

c<usecase>usecase.cpp

These files contain the Use Case class which will be inherited by the Use Case message classes. They
also include some common methods and definitions.

6.3.2 Command Class Files

These files are located in the project folder under /src/usecases/<protocol>/ (where <protocol> is
whichever protocol the Use Case relates to: DLMS, ZigBee, ASN1) and must be created manually from
the provided templates. Also, the existing Use Case specifications and code may be used as example to
create these new code files. They are:

c<usecase>commandusecase.h

c<usecase>commandusecase.cpp

These files contain the command class, command specific definitions and methods for setting constant
and variable input parameters.

6.3.3 Response Class Files

These files are located in the project folder under /src/usecases/<protocol>/ (where <protocol> is
whichever protocol the Use Case relates to: DLMS, ZigBee, ASN1) and must be created manually from
the provided templates. Also, the existing Use Case specifications and code may be used as example to
create these new code files. They are:

Technical Reference Manual DCC Public Page 72 of 89

c<usecase>responseusecase.h

c<usecase>responseusecase.cpp

These files contain the response class, response specific definitions and methods for checking output
parameters. In the case of emulated metering equipment being used, it also includes methods to setup
the response message and to invoke the emulator functions.

6.3.4 Alert Class Files

These files are located in the project folder under /src/usecases/<protocol>/ (where <protocol> is
whichever protocol the Use Case relates to: DLMS, ZigBee, ASN1) and must be created manually from
the provided templates. Also, the existing Use Case specifications and code may be used as example to
create these new code files. They are:

c<usecase>alertusecase.h

c<usecase>alertusecase.cpp

These files contain the alert class, alert specific definitions and methods for checking output parameters.
In the case of emulated metering equipment being used, it also includes methods to setup the alert
message and to invoke the emulator functions.

6.3.5 Test Case Class files

These files are located in the project folder under /src/testcases/ and must be created manually from the
provided templates. Also, the existing Use Case specifications and code may be used as example to
create these new code files. These files are:

ctestcase<usecase>.h

ctestcase<usecase>.c

Contain the test case class and the test case specific definitions. Also contains the action sequence
described in the 'Test Cases' tab.

6.3.6 Emulator Class

When using emulated metering devices the required emulator actions should be coded in files used
specifically for this purpose. These files are located in the project folder under /src/emulators/ and there
are a number of files to differentiate the communication protocols implemented in the framework. By
general principle each set of actions will be coded in a device related file (ESME, GSME or CHF). For
example, ESME related Use Case emulation will be coded in a different file than GSME related Use Case
emulation.

The emulator's command, response and alert handlers are invoked with a message code, it will then
switch to the Use Case handler concerning that message. The basic emulator function is bound to invoke
a routine to produce output information but further logic may be included to reproduce the device
behaviour.

6.3.7 Store Model

The Store Model is necessary when using emulated devices, as it contains information regarding the
equipment's attributes, trust anchor cells and device private keys. The files located at /src/storemodel/
hold the methods for the emulator to interact with the stored information in the scenario configuration file.

Technical Reference Manual DCC Public Page 73 of 89

6.3.8 Compilation

After completing the Use Case’s coding, the source code must be compiled in order to produce a new
executable testing tool. To do so, the User has two options: a) manually compile the tool using the
command-line; b) use Eclipse CDT.

Using the Command-line

To compile the tool using the command-line, the User just have to follow the following procedure:

Open a terminal;

Execute the command “cd /opt/gfi/scr”;

Execute the command “make”.

If everything goes as expected the compilation of the tool should start, similar to the presented in Figure
93, and in the current working directory a new “gfi-testing-tool” executable will be created.

Figure 93 – GFI Tool compilation using the command-line.

Getting the version of the new testing tool will print something similar to the presented in Figure 94. As
one can see, this is a custom build of the GFI Testing Tool, so invoking the get version command-line
command will inform the User about that.

Figure 94 – Custom GFI Testing Tool version.

Because no version number was specified by the User, the text “gfi-custom-build” is presented between
“[“ and “]”. If desired, a version number can be specified using the environment variable “VERSION”. In
order to specify a version number to the Testing Tool, the User can execute the command “make” as
presented in Figure 95.

Technical Reference Manual DCC Public Page 74 of 89

Figure 95 – GFI Tool compilation specifying a version.

Using Eclipse CDT

If using Eclipse CDT to compile the testing tool, the User just have to click in the build button, as
presented in Figure 96.

Figure 96 – GFI Tool compilation using Eclipse CDT.

As with the command-line, if everything goes as expected the compilation of the tool should start and in
the current working directory a new “gfi-testing-tool” executable will be created.

In order to specify the environment variable VERSION while using Eclipse CDT, the User should access
to the menu “ProjectProperties”, then “C/C++ BuildEnvironment” and add the variable VERSION, as
presented in Figure 97, with the desired value (“2.0-MY-VERSION” in the provided example).

Technical Reference Manual DCC Public Page 75 of 89

Figure 97 – Setting environment variables in Eclipse CDT.

6.3.9 Installation

After a successful compilation, the User can install the current GFI testing tool, freezing a specific version
into a specific folder. The installation process will copy all the necessary files into the folder
“/opt/gfi/custom/<gfi-version>-<datetime>”, where <gfi-version> will be equal to the VERSION
environment variable’s value and <datetime> will be the installation date and time. Again, the User have
two options: a) use the command-line; b) use the Eclipse CDT.

Using the Command-line

To install the tool using the command-line, the User just have to follow the following procedure:

Open a terminal;

Execute the command “cd /opt/gfi/scr”;

Execute the command “make VERSION=”<gfi-version>” install”.

If everything goes as expected the installation of the tool should start and in the directory
“/opt/gfi/custom/” a new folder with the tool installation will be created, similar to the presented in Figure
98.

Figure 98 –GFI Testing Tool after installation.

Technical Reference Manual DCC Public Page 76 of 89

Using Eclipse CDT

To install the tool using Eclipse, the User should access to the menu “ProjectMake TargetBuild…”,
select the target “Install” and click the button “Build”, as presented in Figure 99.

Figure 99 – GFI Testing tool installation using Eclipse CDT.

6.4 Use Case Execution

The Use Case Execution is the third phase in the process of creating a new Use Case. This is probably
the most simple one. The GFI testing tool is executed with the Execution XML file produced in the first
phase as one of the inputs and an HTML report is produced by the tool. See Section 5 for further details.

Figure 100 presents an overview of the Execution phase.

During the Execution phase, errors and crashes may arise if the User is adding a new Use Case. Is
responsibility of the User to investigate and correct all the errors that may have been introduced during
the Coding phase. Again, knowledge of C++ is required to solve the eventual errors and warnings.

Figure 100 – Use Case Execution phase overview.

Technical Reference Manual DCC Public Page 77 of 89

6.4.1 Execution with GUI

In the event the User wishes to execute the custom GFI Tool compiled in the previous phase with the
GFI GUI, the path to the executable file should be configured. To do so, in the GUI the User should
access to the menu “EditPreferences” and configure the path to the desired executable Testing Tool
file. By default the GUI uses the Tool available at “/opt/gfi/”.

6.5 Use Case Validation

The last phase is the Use Case Validation. The User must check if the Use Case execution succeeded
and if all the payloads, Command, Response and Alert, agree with the GBCS, DLMS and ZigBee
specification. In the event of all payloads are according to the specifications, the Use Case creation is
done, it is now available in the GFI Test Library and ready to be integrated in a Test. If a mismatch is
found on the payloads, the User should make the necessary corrections/modifications in the specification
and the process starts all over again from the beginning. Figure 101 presents an overview of the
Validation phase.

Figure 101 – Use Case Validation phase overview.

7 Adding New Test Cases to the GUI

This section is intended for Advanced Users. The topics presented in this section will have direct impact
in the GUI’s operation. Experience in understanding and editing XML files is required. Users should keep
this in mind.

The previous section provided a detailed explanation about the process of extending the existing test
case database by creating new test-cases or altering the existing ones - from the initial specification,
message/test files generation, coding and execution.

It was mentioned briefly the GUI could be pointed to a new GFI distribution by changing the path to the
gfi-testing-tool binary in the GUI’s preferences dialog window. However, regardless of the GFI executable
configured to run, the GUI will always provide the same set of test cases by default (ie the ones shipped
with the default distribution). During the GUI’s test construction phase, the original test case database
will always be available. It is, however also possible to make newly created test cases visible to the GUI
application, and so utilize them in a new test.

Technical Reference Manual DCC Public Page 78 of 89

7.1 Test Case Database File

Figure 102 – The file testcasedata.xml.

As was mentioned in the previous section, the GUI application is shipped with a default test case
database file. This file is testcasedata.xml, and is copied to a hidden directory in the user’s home directory
(.gui) every time the application is started. A snapshot of this file is shown in Figure 102.

The information is collected from several sources including the XML specification files, but also from the
GBCS Mapping table. Some additional tags control what and how the GUI will display the information.
The tag <TestCases> is the root element, and each test case is a <TestCase> element, representing a
test case, with an id attribute to identify it. The <Class> element represents the class implementing the
test case and must to be unique.

The <TestCase> element has a child element containing the respective use case information:
<UseCase>. This information is displayed when the Add New Test Case dialog window is opened. The
contents of the <Name> element will be used to identify the test case.

Technical Reference Manual DCC Public Page 79 of 89

Of special importance is the <Filter> element, as it defines how the test case will be visible. Possible
values are CHF, GPF, ESME, GSME, PPMID and HCALCS. This will make the test visible only when it
is for the device type specified.

The <Parameters> section defines the test case parameters, as well as their default values. It closely
resembles the contents of a test execution file (properties file). These are the default iteration values
used whenever a test is created using the GUI wizard. Most of the <Parameter> element attributes will
map directly to their equivalent in the test execution file. However, the attribute longString defines the
type of component used in the GUI’s visual editor to edit the value of the parameter: if set to True, the
component will be a multiline text box; otherwise it will be a single-line text box.

7.2 Manufacturer Test Cases File

To make new test cases visible in the GUI, a new file called manufacturer-test-cases.xml must be present
in the .gui directory, and its format must be the exactly the same as the testcasedata.xml file. The
testcasedata.xml file may serve as a template for its creation, but the user is advised to make sure no
test case names or classes are duplicated, and the structure is strictly observed, otherwise the file
contents may be ignored. Next, an example will be presented to illustrate the concepts just described.

The default database is shipped with two test cases with variations for ESME and GSME: CS03 and
CS04. For CS03, the names are CS03-ESME and CS03-GSME respectively. Their implementation is
exactly the same, the only difference being the parameter values. The test cases have different names
and class names but they extend the same class: CTestCaseCS03. Having this in mind, and solely for
the sake of illustrating the concept, the original test case could be included adding it to the manufacturer-
test-cases.xml file, provided the names for it and its class are unique. Figure 103 shows how this could
be done.

Figure 103 – manufacturer-test-cases.xml.

The TestCase element is a copy of the ESME variation; However the test case id is ATC-TC-CS03-
ORIGINAL and the class name is CTestCaseCS03. These must be unique values. As the filter value is
ELECTRIC, this test case will be added to the list of electric test cases (Figure 104).

Technical Reference Manual DCC Public Page 80 of 89

Figure 104 – Updated list of Test Cases.

8 Business Scenarios

The GFI tool is used to control and test SMETS 2 devices and its use is limited by the user’s knowledge
of GBCS. In order to allow the user to focus on the intended section of GBCS, starting on GFI version
2.1.6, a set of pre-prepared business scenarios (workspace and manuals) was made available,
allowing a user to easily set up a device and to test that specific scenario.

The business scenarios (workspace and manuals) are located in /opt/gfi/doc/business-scenarios/ in
a separate folder for each GBCS version it is aligned with.

For each GBCS version, there is a global manual “business-scenarios-manual.pdf” that gives an
overview on the organization and usage of these scenarios.

The user can also access the business scenarios folder using the shortcut from the desktop.

Figure 105 - Business Scenarios Desktop shortcut

Technical Reference Manual DCC Public Page 81 of 89

9 OTA Functionality

9.1 OTA Tool

The GUI has a functionality to create and verify OTA Upgrade Images which can be accessed by using
the option “OTA Tool” inside of “Utilities” (Figure 93).

Figure 106 – Invoking the ‘OTA Tool’ functionality through the Utilities menu

In the OTA Tool there are two main options: Build OTA Upgrade Image and Verify Images Info (Figure
94).

Figure 107 – Build and Verify tabs

The Build tab is used to build an OTA Upgrade Image and the Verify tab to verify if the OTA Upgrade
Image or if the input files for the OTA Upgrade Image build are valid.

In both tabs the mandatory fields are marked with a ‘*’ and, depending on the Build or Verify types
selected, the other options will change to avoid mistakes using the tool.

The form errors will be shown at the Dialog Header at the info section (Figure 95).

Figure 108 – Form errors

For both cases (build and verify) the log of the operation will be shown on the right side of the window.
In this section the form errors and the process debug information are displayed (Figure 96).

Technical Reference Manual DCC Public Page 82 of 89

Figure 109 – Log section

It is also possible to use the “OTA Tool” from the command line. The “OTA Tool” executable is
available on the folder “/opt/gfi/bin” and when running with option “--help”, the list of parameters is
displayed.

9.1.1 Build OTA Upgrade Image

In the Build tab, the Manufacturer Image can be made available in two different ways: two separated
files (Header + Manufacturer Image) or in a Single file containing both contents. To select the correct
type use the option “Select Build Type”.

Figure 110 – Choose Build type

Technical Reference Manual DCC Public Page 83 of 89

Selecting the target device “PPMID”, the input fields change according the data required for this device.

Figure 111 - Choose Target Device

To build an Upgrade Image the Private Key (to sign the output file) and Header and Manufacturer
Image (in separated files or in a single file) files are mandatory.

The Public Key file is used only to verify if the Upgrade Image has been correctly signed and the
Output folder is used to allow the user to specify a folder where the Upgrade Image will be saved. If the
folder is not specified, the Upgrade Image will be created on the user Desktop and will be named as
upgradeImage.bin.

When build process finishes, the Upgrade Image will always be validated using the Header information
and if the Public Key has been provided, the Signature will also be validated.

From the command line, to build an OTA image using a file with the header and a file with the

manufacturer image, use the following command:

/opt/gfi/bin/otaTool -b -H header.bin -M manufacturer-image.bin -P
/opt/gfi/conf/smki/org/ZAZ1/key/Z1-supplier-ds.key

To build an OTA image using a file containing the header concatenated with the manufacturer image,
the following command must be used:

/opt/gfi/bin/otaTool -b -S header-img.bin -P /opt/gfi/conf/smki/org/ZAZ1/key/Z1-
supplier-ds.key

To build an OTA image for PPMID using a file with the header and a file with the manufacturer image,

use the following command:

/opt/gfi/bin/otaTool -b -H header.bin -M manufacturer-image.bin -n

9.1.2 Verify OTA Upgrade Image

To use the Verify Upgrade OTA Image Data option, the only mandatory information is the Upgrade
Image itself but if the user also provides the Public Key, then the OTA Tool will also check the
signature of the Upgrade Image. Otherwise, only the header will be verified.

Technical Reference Manual DCC Public Page 84 of 89

Figure 112 – Verify Upgrade Image

Selecting the target device “PPMID”, the input fields change according the data required for this device.

Figure 113 - Choose Target Device

To verify the OTA upgrade image using the command line, use the following command:

/opt/gfi/bin/otaTool -v -U upgradeImage.bin -p /opt/gfi/conf/smki/org/ZAZ1/cert/Z1-
supplier-ds.pem

To verify the OTA upgrade image for PPMID using the command line, use the following command:

/opt/gfi/bin/otaTool -v -U upgradeImage.bin -n

9.1.3 Verify Header + Manufacturer Image

To verify if the Header file or/and the Signature are valid for the Manufacturer Image, use the ‘Verify
Manufacturer Image construction’ option.

If the purpose of the verification is to check if the Header is valid, the user needs to input the Header
file. If the user needs to verify the Signature, it is required to provide the Signature file and the Public
Key. For both cases, the Manufacturer Image File is mandatory.

These two verifications can be run at once by providing all the information for both verifications.

Technical Reference Manual DCC Public Page 85 of 89

Figure 114 – Verify Manufacturer Image

Selecting the target device “PPMID”, the input fields change according the data required for this device.

Figure 115 - Choose Target Device

9.2 Send Image to Devices

The OTA upgrade images to send to the devices need to be available on the Communications Hub
storage folder. If the user uses the default location to store the images, the path is /opt/gfi/ota-files. In
the event that the user chooses a different folder (in scenario file), the images should be stored in this
location. To change the OTA storage folder, please refer to 4.1.4.

The images in the folder will appear in the Communications Hub Log, when the device is started.

Figure 116 - Image files in Communications Hub Storage

Technical Reference Manual DCC Public Page 86 of 89

When a new image is added to the folder after the Communications Hub is running, the user needs to
update the files in the folder choosing the command ‘ota check-images’ in the Communications Hub
CLI.

9.2.1 Send Image notify to devices by node Id

To notify the devices for the existence of a new OTA upgrade image in the Communications Hub, the
user needs to choose the ‘ota send-image-notification unicast’ command in the Communications
hub followed by the device node to send the notification for new image. If the device is identified as a
GSME, only the respective FNF is actioned. If the device is identified as a non-GSME, an image-notify
command will be sent to the target.

9.2.2 Send Image notify to all devices by broadcast

To notify all devices, the command ‘ota send-image-notification broadcast’ must be used to send the
new image notification. The Communications hub sends the image-notify command to broadcast and
also activates the respective FNF for GSME.

10 Sending Publish Events Zigbee Command

The gfi-comms-hub is capable of generating events and sending them, by means of the Zigbee Publish
Event command, to devices bound to the Events Cluster (0x709). This feature is useful to simulate the
scenario in which the mirror shall publish a command sent unsolicited from a cluster server on a BOMD
(Battery Operated Mirrored Device) to all associated client devices that have bound to the respective
server on the mirror, as per section D.3.4.4.3.2 “Unsolicited Commands from a BOMD” of the Zigbee
Smart Energy Standard.

10.1 Generate and Send Unsolicited Publish Events

To generate and send the event by means of the Zigbee Publish Event command, enter the gfi-comms-
hub CLI as per the steps described in 4.2. Typing “gpf ?” will display the syntax of the command
generate-events.

Figure 117 - Command “gpf generate-events” available in the GFI Comms Hub’s CLI

Table 19 presents the command’s parameters.

Technical Reference Manual DCC Public Page 87 of 89

Parameter Description Example

eventId Specifies the id of the event 0x8F32

logId

Specifies the Log Id according to the Zigbee
specification and GBCS. The parameter shall have
the value “0x03” or “0x06” having the meaning of
“Device's own General Event Log” and “GSME Proxy
log copy”, respectively

0x03

Table 19 - Command “gpf generate-events” parameters

An example of this command would be “gpf generate-events 0x8F32 0x03”. The GFI CH would then
publish the event to all client devices bound to the Events Cluster (0x709). The local and remote
endpoints to be used will be the ones from the GFI CH’s binding table, which can be displayed by
typing the command “print binding table” on the GFI CH’s CLI.

11 Glossary

Table 20 presents the list of definitions used throughout this document.

Name Description

Applicable Document
A document is considered applicable if it complements this document. All its
content is directly applied as if it was stated as an annex of this document.

Reference Document
A document is considered a reference if it is referred but not applicable to
this document. Reference documents are mainly used to provide further
reading.

Test
A set of Test Cases (ranging from one to N) that are grouped together with
the purpose of being executed in one run.

Test Case A Use Case as defined by SMETS.

VSIS™ A CSW Critical Systems Validation Platform

Table 20 – Definitions.

Table 21 presents the list of acronyms used throughout this document.

Acronym Description

ACB Access Control Broker

AD Applicable Document

Technical Reference Manual DCC Public Page 88 of 89

Acronym Description

ASN.1 Abstract Syntax Notation One

ATG Automated Test of GBCS

BOMD Battery Operated Mirrored Device

CBKE Certificate-Based Key Exchange

CHF Communications Hub Function

CSW Critical Software, S.A.

DUT Device Under Test

ESME Electricity Smart Metering Equipment

EUI-64 The IEEE-defined 64-bit Extended Unique Identifier

GBCS Great Britain Companion Specification

GFI GIT For Industry

GIT GBCS Interface Testing

GSME Gas Smart Metering Equipment

HAN Home Area Network

KRP Known Remote Party

MAC Message Authentication Code

NA Not Applicable

OTA Over-The-Air

RD Reference Document

SCPI Standard Commands for Programmable Instruments

SDB Software Database

SMETS Smart Metering Equipment Technical Specifications

SMKI Smart Meter Key Infrastructure

SVF System Validation Facility

TBC To be confirmed

Technical Reference Manual DCC Public Page 89 of 89

Acronym Description

TBD To be defined

UTRN Unique Transaction Reference Number

ZCL ZigBee Cluster Library

Table 21 – Acronyms.

